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Accuracy can be Biased
These problems can be addressed 
in part by defining an overall
accuracy across all conditions.

Recall and Precision are Losers
Recall and precision suffer from a number 
of disadvantages that make them unsuitable 
for defining an accuracy measure: 

• They assess only a single condition
• There is a tradeoff between them
• Neither can be interpreted alone
• They ignore the cost of errors
• Each is easily inflated:
¤ Recall by labeling more cases +ve
¤ Precision by labeling hard ones –ve
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The Bookmaker tests your Edge
Traders and gamblers know that they have to have an edge to win – and this 
edge has to be bigger than the house percentage or the costs of trading to make 
a profit. Markets are fairly efficient, and brokers and bookmakers and your 
fellow speculators aren’t all fools – there has to be real information available 
and correctly used in order to be able to win consistently.  This is your edge. 
This small bias in your favour eventually adds up to a proportionate profit.
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The Research Gamble
Research is about trial and error, posing problems, searching for solutions. 
Frequently we are in the position of testing a highly approximate theory or 
model and then having to evaluate its predictions against real world results.

This leads to a contingency matrix in which we tabulate the statistics for 
how these actual results compare with our model. The simplest case has 
positive and negative outcomes for both the real labels and the predictions. 
The actual results are shown in columns for ±R whilst the predictions are 
showing in rows for ±P. Ideally the main diagonal, +P+R and –P–R, has 
100% of cases and the off diagonal cells are all 0 – no misclassifications.

In the social and empirical sciences, the next step would be to perform a 
significance test to assess the probability that the results are due to chance 
and hence estimate whether there is sufficient test data for the conclusions 
to be valid. Multiplying the figures by some large factor whilst retaining 
the same proportions is always sufficient to assure significance.

For information retrieval, machine learning and neural nets, the problem is 
not normally too little data but too much! Large amounts of data are used 
in training and significant proportions are set aside for validation and 
testing to avoid overtraining. In information retrieval or web search, the 
problem is that keyword search returns masses of ‘hits’ and we need to 
assess how useful the results are – that is we want to know the ‘accuracy’.

With gambling and trading, we are not interested in just any arbitrary 
definition of accuracy but want a formula that will translate directly to 
dollars and cents, quantifying to what extent our system gives us an edge. 
In the final analysis the bookmaker gives us odds, the market gives us 
prices, and the broker charges us commissions – and these do translate our 
decisions directly to dollars and cents, whether on paper or in practice.

In this case, if the proportions are the same in our contingency table, the 
percentage return will be the same too, unlike significance. This paper 
shows that fair bookmaker odds define the unique formula for determining 
the probability or proportion of time that we are making an informed 
correct decision, versus guessing or making a superstitious decision. 

This is different from significance in that it is scale independent, assessing 
how useful the contingency is rather than how rare. In a scientific or 
machine learning application, some kind of significance test or validation 
should also be performed to ensure that the results are not due to chance or 
overtraining.

–R is class 2, – ve
cases, 42 identified, 
28 misclassified; so 
inverse recallor 
specificityis 42/70 = 
60%, fallout = fpr= 
28/70 = 40%

+R is class 1, 
+ve cases, 12 
predicted, 18 not 
predicted; recall or 
sensitivity= tpr =
12/30 = 40% 
= chancelevel

Trotting out Recall and Precision
The standard accuracy measures used to evaluate neural nets, learning, 
parsing, tagging, searching, etc. comes from the search application where we 
have a pool of documents, the corpus, some of which are relevant (+R) but 
most of which are not (– R). Our search procedure returns a set of documents 
predicted as useful (+P) and omits others that are predicted as irrelevant (–P). 
The proportion of relevant documents returned is recall, |+P+R|/|+R|, whilst 
the proportion of returned documents relevant is precision, |+P+R|/|+P|.

30 cases are winners and 70 
are irrelevant. If we had no 
way of predicting and just 
guessedthen we’d expect to 
be right 30% of the time and 
thus achieve 30% precision

The model predicted 40 +ve
cases and 60 – ve cases, but 
in this example we were 
just guessingso we expect 
40% recall just because we 
gave 40% positive labels

The total number, 
N, of labeled cases 
is 100 in this 
example, so we can 
also read these 
figures as %. The 
table shows the 
expected results for 
mere guessing

Misclassified 
cases are 

off diagonal.

Correctly labeled 
cases lie on the main 
diagonal: accuracy is 
12+42 correct labels 
out of 100 or 54%.

+P is label 1, 
+ve predictions, 
12 right 28 wrong; 
precisionis 12/40 
or 30% = chance
level = guessing

– P is label 2, 
– ve predictions, 
42 right 18 wrong; 
inverse precisionis 
42/60 or 70%

The Bookmaker always Wins
In gambling, the house always wins, and in horseracing, the bookmaker is no
exception.  The basis of the odds set by a bookie is the assessed likelihood of

a horse winning, as influenced by talk and bets
from those in the know.   The bookie will then
add on a percentage as she calculates the odds.

We will work with fair odds based on statistics
on past performance. In our example our horse
has won 30 out of 100 starts leading to odds of

7:3 for our field.  This means if the horse wins I
win $7 on a $3 bet that I stand to lose if it loses.

Note that these fair odds mean there is a 30%
chance of winning $7 and a 70% chance of

losing $3 and they are fair in the sense of
being zero sum: the expected gain is

30% of $7 – 70% of $3 = 0. 

This punter doesn’t know
anything – he’s just guessing!

A real bookie would relieve him 
of his money in no time.  But the fair 

Bookmaker algorithm simply 
reports that his edge is zero!

He won 12 ×××× $7 ++++ 42 ×××× $3 = $210.
He lost 18 ×××× $7 ++++ 28 ×××× $3 =$210.

He was lucky to break even!

General Bookmaker
We now show how to apply Bookmaker to the general classification case
where there are K classes we are trying to identify. In this case we simply 
calculate and use the odds separately for each of the K horses. Note that 
once you bet on a horse, your system specifies a label, the value of the bet, 
the penalty incurred if you lose, is specified independent of which other 
horse wins. We furthermore present it in a normalized form such that the 
expected gain directly gives the probability that you are making an informed 
decision as opposed to guessing.

In defining Bookmaker formally we make use of sample probabilities from 
the contingency matrix: pR(c) = |R = c| / N,  pP(l) = |P = l | / N and also
pPR(l, c) = |P = l & R = c | / N. Our example has two classes using {+, –} 
to denote predicted labelsP and real classesR, but in general we use the set 
P = R = {1 .. K}.  In this formulation, precision and recall correspond to 
conditional probabilities and are respectively pR(c=l|l) = pPR(l, c) / pP(l) 
and pP(l=c|c) = pPR(l, c) / pR(c).

The generalized Bookmaker payoff formula is then

B =    ∑ l∈P pP(l) ∑ c∈R pPR(l,c) w(c|l ), 

where w(c|l) =    + 1 / pR(l) (c = l),
=   – 1 / (1 – pR(l)) (c ≠ l).

In our example, the normalization corresponds to dividing the payoffs by 
N pR(l) (1 – pR(l)) = 100 × 0.30 × 0.70 = 21 (independent of l ). This 
guesswork matrix gives B = .4(.12/.3 – .28/.7) + .6(.42/.7 – .18/.3 ) = 0. The 
perfect decision matrix has pP(l) = pR(l) = pPR(l, l) so |+P+R| = 30 and 
|–P–R| = 70 whence B = .3(.3/.3 – 0/.7) + .7(.7/.7 – 0/.3 ) = 1.

The Bookmaker measures Informedness
The Bookmaker formula measures the ‘informedness’ of our decisions. 
Suppose that we guess 50% of the time and make a correct informed 
decision 50% of the time. Our contingency matrix will then be the average 
of the guessing matrix and the perfect decision matrix giving the calculation 
B = .35((.06+.15)/.3 – (.14+0)/.7) + .65((.21+.35)/.7 – (.09+0)/.3) = 0.5.

The Bookmaker is Unique
The ability to recover informedness is unique to the bookmaker measure, 
and indeed it also detects informed incorrect decisions, whether deliberate, 
due to overtraining or a function of atypical data. In this caseBookmaker 
will return a negative value. Its uniqueness follows from the linearity of 
the equation combined with the linearity of our assumed mix of guessing 
and informed decision. Note that in the binary (yes/no) case B =tpr – fpr. 

The weighted averages of correct 
cases, of recall and inverse recall, 
of precision and inverse precision, 
are all equivalent accuracy
measures. But this definition does 
not take into account the cost of 
errors or the baseline for guessing.
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