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Abstract.  Over the last decade there has been increasing concern 
about the biases embodied in traditional evaluation methods for 
Natural Language Processing/Learning, particularly methods 
borrowed from Information Retrieval. Without knowledge of the 
Bias and Prevalence of the contingency being tested, or equivalently 
the expectation due to chance, the simple conditional probabilities 
Recall, Precision and Accuracy are not meaningful as evaluation 
measures, either individually or in combinations such as F-factor.  

The existence of bias in NLP measures leads to the ‘improvement’ 
of systems by increasing their bias, such as the practice of improving 
tagging and parsing scores by using most common value (e.g. water 
is always a Noun) rather than the attempting to discover the correct 
one. In this paper, we will analyze both biased and unbiased 
measures theoretically, characterizing the precise relationship 
between all these measures. 

1 INTRODUCTION 

A common but poorly motivated way of evaluating results of 
Language and Learning experiments is using Recall, Precision and 
F-factor.  These measures are named for their origin in Information 
Retrieval and present specific biases, namely that they ignore 
performance in correctly handling negative examples, they 
propagate the underlying marginal Prevalences and Biases, and they 
fail to take account the chance level performance. In the Medical 
Sciences, Receiver Operating Characteristics (ROC) analysis has 
been borrowed from Signal Processing to become a standard for 
evaluation and standard setting, comparing the Recall-like True 
Positive Rate and False Positive Rate.  In the Behavioural Sciences, 
the related concepts of Specificity and Sensitivity, are commonly 
used. Alternate techniques, such as Rand Accuracy, have some 
advantages but are nonetheless still biased measures unless 
explicitly debiased.  

2 THE BINARY CASE  

It is common to introduce the various measures in the context of a 
dichotomous binary classification problem, where the labels are by 
convention + and − and the predictions of a classifier are 
summarized in a four cell contingency table. This contingency table 
may be expressed using raw counts of the number of times each 
predicted label is associated with each real class, A, B, C, D , 
summing to N, or we may use acronyms for the generic terms for 
True and False, Real and Predicted Positives and Negatives, or else 
relative versions of these, e.g: tp, fp, fn, tn  and rp, rn and 
pp, pn  refer to the joint and marginal probabilities, and the four 
contingency cells and the two pairs of marginal probabilities each 
sum to 1. These systems are both illustrated in Table 1. 
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We thus make the specific assumptions that we are predicting and 
assessing a single condition that is either positive or negative 
(dichotomous), that we have one predicting model, and one gold 
standard labelling. 

2.1 Recall & Precision, Sensitivity & Specificity 
Recall or Sensitivity (as it is called in Psychology) is the proportion 
of Real Positive cases that are correctly Predicted Positive. This 
measures the Coverage of the Real Positive cases by the +P 
(Predicted Positive) rule. Its desirable feature is that it reflects how 
many of the relevant cases the +P rule picks up. It tends not to be 
very highly valued in Information Retrieval (on the assumptions that 
there are many relevant documents, that it doesn't really matter 
which subset we find, that we can't know anything about the 
relevance of documents that aren't returned). Recall tends to be 
neglected or averaged away in Machine Learning and 
Computational Linguistics (where the focus is on how confident we 
can be in the rule or classifier). However, Recall has been shown to 
have a major weight in predicting success in several context 
including these areas, and in a Medical context Recall is primary but 
it is referred to as True Positive Rate (tpr ). Recall is defined, with 
its various common appellations, by equation (1): 

Recall   =    Sensitivity = tpr = tp/rp  (1) 

Conversely, Precision or Confidence (as it is called in Data Mining) 
denotes the proportion of Predicted Positive cases that are correctly 
Real Positives. It can also be called True Positive Accuracy (tpa ), 
as a measure of accuracy of Predicted Positives in contrast with rate 
of discovery of Real Positives (tpr ).  Precision is defined in (2): 

Precision =   Confidence = tpa  = tp/pp   (2) 

These two measures and their combinations focus only on the 
positive examples and predictions, although between them they 
capture some information about the rates and kinds of errors 
made.  However, neither of them captures any information about 
how well the model handles negative cases.  Recall relates only to 
the +R column and Precision only to the +P row.  Neither of these 
takes into account the number of True Negatives.  This also applies 
to their Arithmetic, Geometric and Harmonic Means: A, G and 
F=G2/A  (the F-factor or F-measure). 

Table 1. Systematic and traditional notations in a contingency table.  

 +R −R     +R −R   

+P tp fp pp  +P A B A+B  

−P  fn tn pn  −P  C D C+D 

 rp rn 1    A+C B+D N 
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Usually, there is in principle nothing special about the Positive case, 
and we can define Inverse statistics in terms of the Inverse problem 
in which we interchange positive and negative and are predicting the 
opposite case.  Inverse Recall or Specificity is thus the proportion of 
Real Negative cases that are correctly Predicted Negative (3), and is 
also known as the True Negative Rate.  Rand Accuracy explicitly 
takes into account the classification of negatives, and is expressible 
both as a weighted average of Precision and Inverse Precision and as 
a weighted average of Recall and Inverse Recall. Conversely, the 
Jaccard or Tanimoto similarity coefficient explicitly ignores 
correctly classified negatives (TN). Each of these measures also has 
a complementary form defining an error rate, of which some have 
specific names and importance: Fallout or False Positive Rate (fpr ) 
is the proportion of Real Negatives that occur as Predicted Positive 
(ring-ins); Miss Rate or False Negative Rate (fnr ) is the proportion 
of Real Positives that are Predicted Negatives (false-drops). 

2.2 Prevalence, Bias, Cost & Skew 
We now turn our attention to various forms of bias or skew that 
detract from the utility of all of the above surface measures [1,2]. We 
will first note that rp  represents the Prevalence of positive cases, 
RP/N – it is not usually under the control of the experimenter.  By 
contrast, pp represents the (label) Bias of the model [1], the 
tendency of the model to output positive labels, PP/N, and is 
directly under the control of the experimenter, who can change the 
model by changing the theory or algorithm, or some parameter or 
threshold.  A common rule of thumb, and a characteristic of some 
algorithms, is to parameterize a model so that Prevalence = Bias, viz. 
rp = pp . Corollaries of this setting are Recall = Precision (= A = 
G = F) , Inverse Recall = Inverse Precision and Fallout = Miss Rate. 

2.3 ROC and PN Analyses  
Flach [4] has highlighted the utility of ROC analysis to the Machine 
Learning community, and characterized the skew sensitivity of 
many measures in that context, utilizing the ROC format to give 
geometric insights into the nature of the measures and their 
sensitivity to skew. ROC analysis plots the rate tpr  against the rate 
fpr . The most common condition is to minimize the area under the 
curve (AUC), which for a single parameterization of a model is 
defined by a single point and the segments connecting it to (0,0) and 
(1,1).  A particular cost model and/or accuracy measure defines an 
isocost gradient, which for a skew and cost insensitive model will be 
c=1 , and hence another common approach is to choose a tangent 
point on the highest isocost line that touches the curve.  The area 
under the simple trapezoid is: AUC = 1 – (fpr+fnr)/2 . 

2.4 DeltaP, Informedness and Markedness 
Powers [2] also derived an unbiased accuracy measure to avoid the 
bias of Recall, Precision and Accuracy due to population Prevalence 
and label bias. The Bookmaker algorithm costs wins and losses in 
the same way a fair bookmaker would set prices based on the 
odds.  Powers then defines the concept of Informedness which 
represents the 'edge' a punter has in making his bet, as evidenced and 
quantified by his winnings.  Fair pricing based on correct odds 
should be zero sum – that is, guessing will leave you with nothing in 
the long run, whilst a punter with certain knowledge will win every 
time.  Informedness is the probability that a punter is making an 
informed bet and is explained in terms of the proportion of the time 
the edge works out versus ends up being pure guesswork.  Powers 
defined ‘Bookmaker Informedness’ for the general, K-label, case, 

but we present only the dichotomous formulation of Powers 
Informedness, as well as the complementary concept of Markedness. 
In fact, Bookmaker Informedness-based formulae may be averaged 
over all labels according to the label bias, and Markedness-based 
formulae over all classes by prevalence. 

Definition 1  
Informedness quantifies how informed a predictor is for the 
specified condition, and specifies the probability that a prediction 
is informed in relation to the condition (versus chance). 

Informedness = Recall + Inverse Recall – 1 
  = tpr-fpr  = 1-fnr-fpr  =  2AUC-1 (3) 
  = (Recall-Bias) / (1−Prevalence) 

Definition 2  
Markedness quantifies how marked a condition is for the 
specified predictor, and specifies the probability that a condition 
is marked by the predictor (versus chance). 

Markedness = Precision + Inverse Precision – 1 
  =  tpa-fna = 1-fpa-fna   (4) 
  = (Precision−Prevalence) / (1-Bias) 

These definitions are aligned with the psychological and linguistic 
uses of the terms condition and marker. The condition represents the 
experimental outcome we are trying to determine by indirect 
means.  A marker or predictor (cf. biomarker or neuromarker) 
represents the indicator we are using to determine the 
outcome.  There is no implication of causality, however there are 
two possible directions of implication.  Detection of the predictor 
may reliably predict the outcome, with or without the occurrence of a 
specific outcome condition reliably evincing the predictor. 

In the Psychology literature, Markedness is known as DeltaP and is 
empirically a good (normative) predictor of human associative 
judgements – that is it seems we develop associative relationships 
between a predictor and an outcome when DeltaP is high, and this is 
true even when multiple predictors are in competition. Conversely a 
complementary, backward, additional measure of strength of 
association, DeltaP' aka Informedness has been proposed [5].   

Note that we can also estimate significance and confidence [3]: 

χ2 =   N·Informedness·Markedness   (5) 
CI = 1-|Informedness|/√[N-1 ]; CM  = 1-|Markedness|/√[N-1 ] 
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