
  

Significance and Confidence in Evaluation 

David M W Powers1 

Abstract.  Significance is becoming a matter of considerable 
concern for Machine Learning, but remains of little concern in other 
areas of Artificial Intelligence, particularly where Machine Learning 
paradigms are not rigorously applied. The Machine Learning 
paradigm of independent Validation and Evaluation, or more 
complex paradigms such as Cross-Validation or Bootstrapping, 
allows a quantifiable measure of confidence in the results of an 
evaluation. 

However, over the last decade there has been increasing concern 
about the biases embodied in traditional evaluation methods, as well 
as questions about how to deal with prevalence and bias. This paper 
briefly introduces unbiased alternatives to Recall, Precision and 
Accuracy and shows how they can be used to directly estimate 
familiar estimates of significance and confidence. 

In this paper we will develop significance and confidence 
estimates theoretically, as well as evaluating their performance 
empirically using a Monte Carlo simulation.  

In relation to significance, we note the existence of measures used 
to estimate correlation from chi-squared sums, and relate our 
proposals to these estimates. 

In relation to confidence, we discuss the advantages of confidence 
intervals over mere statistical significance. These advantages are 
particularly pertinent at a time when the Machine Learning 
community is increasingly concerned about the overuse of 
repositories of standard datasets – one in twenty experiments may be 
expected to be significantly better than chance or than any other 
specific result when significance is evaluated to the 0.05 level, but 
on the other hand standard correction techniques tend to be overly 
conservative and represent an explicit bias against later work. 

1 INTRODUCTION 

Recent theoretical development of unbiased evaluation measures 
[1,2] have been shown empirically to be excellent measures of 
human association [3,4] and to have considerable advantage over 
other common measures including Recall, Precision, Rand Accuracy 
and F-factor [5], and to have a strong relationship with Correlation  
[5] that makes them also preferable to Cohen Kappa [6-9]. 

We recapitulate both traditional and unbiased measures in section 
2, then examine their relationship with a variety of standard 
significance measures before turning to consider an alternate 
approach to significance via confidence intervals defined directly 
from the measures themselves. 

Finally we present empirical results based on binomial Monte 
Carlo simulation to clearly illustrate the power of both our 
significance and confidence measures and complement the results of 
[5]. We also recommend an approach to handling significance that 
specifically allows for multiple experiments, algorithms and 
parameterizations being tested against the same dataset, including in 
particular datasets stored in a Machine Learning repository. 
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2 THE DICHOTOMOUS MEASURES  

It is common to introduce the various measures in the context of a 
dichotomous binary classification problem, where the labels are by 
convention + and − and the predictions of a classifier are 
summarized in a four cell contingency table. This contingency table 
may be expressed using raw counts of the number of times each 
predicted label is associated with each real class, or may be 
expressed in relative terms.  Cell and margin labels may be formal 
probability expressions, may derive cell expressions from margin 
labels or vice-versa, may use alphabetic constant labels a, b, c, d  
or A, B, C, D , or may use acronyms for the generic terms for True 
and False, Real and Predicted Positives and Negatives.   UPPER 
CASE typewriter font is used where the values are counts, and 
lower case  where the values are probabilities or proportions 
relative to N or the marginal probabilities; in addition will use Mixed 
Case text font for popular nomenclature that may or may not 
correspond directly to one of our formal systematic names. True and 
False Positives (TP/FP ) refer to the number of Predicted Positives 
that were correct/incorrect, and similarly for True and False 
Negatives (TN/FN), and these four cells sum to N. On the other hand 
tp, fp, fn, tn  and rp, rn and pp, pn  refer to the joint and 
marginal probabilities, and the four contingency cells and the two 
pairs of marginal probabilities each sum to 1. We will attach other 
popular names to some of these probabilities in due course. 

We thus make the specific assumptions that we are predicting and 
assessing a single condition that is either positive or negative 
(dichotomous), that we have one predicting model, and one gold 
standard labelling. Unless otherwise noted we will also for 
simplicity assume that the contingency is non-trivial in the sense that 
both positive and negative states of both predicted and real 
conditions occur, so that no marginal sums or probabilities are zero. 

We illustrate in Table 1 the general form of a binary contingency 
table using both the traditional alphabetic notation and the directly 
interpretable systematic approach. Both definitions and derivations 
in this paper are made relative to these labellings, although English 
terms (e.g. from Information Retrieval) will also be introduced for 
various ratios and probabilities. The positive diagonal represents 
correct predictions, and the negative diagonal incorrect predictions. 
The predictions of the contingency table may be the predictions of a 
theory or grammar, of some computational rule or system (e.g. an 
Expert System or a Neural Network or a POS Tagger), or may 
simply be a direct measurement, a calculated metric, or a latent 
condition, symptom or marker.  We will refer generically to "the 
model" as the source of the predicted labels, and "the population" or 
"the world" as the source of the real conditions. We are interested in 
understanding to what extent the model "informs" predictions about 
the world/population, and the world/population "marks" conditions 
in the model. 
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2.1 Recall & Precision, Sensitivity & Specificity 
Recall or Sensitivity (as it is called in Psychology) is  by equation (1) 
and while often deprecated in Information Retrieval is regarded as 
the primary statistic of relevance in the Medical and Social 
Sciences: 

Recall   =    Sensitivity = tpr = tp/rp   
       =  TP / RP = A /(A+C)   (1) 

Recall is recognized to supply an incomplete picture, and in 
Artificial Intelligence, Precision or Confidence (as it is called in 
Data Mining) is its common counterpart, as defined in (2): 

Precision =   Confidence = tpa = tp/pp  
  =  TP / PP =  A /(A+B)   (2) 

Inverse Recall or Specificity is the complementary measure most 
commonly used in Medical and Social Science, and is also known as 
the True Negative Rate (tnr ).  Conversely, the rarely used can also 
be called True Negative Accuracy (tna ): 

Inverse Recall  = tnr  = tn/rn   
   = TN/RN  = D/(B+D)   (3) 
Inverse Precision = tna  = tn/pn  
   = TN/PN  = D/(C+D)   (4) 

Rand Accuracy explicitly takes into account the classification of 
negatives, and is expressible (5) both as a weighted average of 
Precision and Inverse Precision and as a weighted average of Recall 
and Inverse Recall. Cohen Kappa [6] is noteworthy as an approach to 
computing a debiased version of Accuracy, but its non-linearity 
makes it less desirable than conventional correlation [5,7,8,9]. 

Note that FN and FP are sometimes referred to as Type I and Type 
II Errors, and the rates fn  and fp  as alpha and beta, respectively – 
referring to falsely rejecting or accepting a hypothesis.  More 
correctly, these terms apply specifically to the meta-level problem 
discussed later of whether the precise pattern of counts (not rates) in 
the contingency table fit the null hypothesis of random distribution. 

2.2 Prevalence, Bias, Cost & Skew 
We note that rp  represents the Prevalence of positive cases, RP/N, 
and is assumed to be a property of the population of interest – it may 
be constant, or it may vary across subpopulations, but is in general 
not under the control of the experimenter.  By contrast, pp 
represents the Bias of the model [5], the tendency of the model to 
output positive labels, PP/N, and is directly under the control of the 
experimenter, who can change the model by changing the theory or 
algorithm, or some parameter or threshold.  Note that the normalized 
binary contingency table with unspecified margins has three degrees 
of freedom – setting three non−redundant ratios determines the rest. 

2.3 AUC, DeltaP, Informedness and Markedness 
Powers [1] derived an unbiased accuracy measure, Bookmaker 

Informedness to avoid the bias of Recall, Precision and Accuracy 
due to population Prevalence and label bias. Optimizing Info. This is 
equivalent to unbiased WRAcc=2AUC-1 in ROC analysis [2]. 

An dual of Informedness, Markedness, is defined in [5]: 

Informedness = Recall + Inverse Recall – 1 
  = tpr-fpr = 1-fnr-fpr    (5) 
Markedness = Precision + Inverse Precision – 1 
  = tpa-fna = 1-fpa-fna    (6) 

In the Psychology literature, Markedness is known as DeltaP and is 
empirically a good predictor of human associative judgements – that 
is it seems we develop associative relationships between a predictor 
and an outcome when DeltaP is high, and this is true even when 
multiple predictors are in competition [3,4] and DeltaP' [3] 
corresponds to Informedness.  These correspond to the regression 
coefficient for the dual directions of association [3,5], and their 
geometric mean is by definition the correlation [3,5]. 

2.4 Effect of Bias & Prev on Recall & Precision  

We present some simple relationships between these biased and 
unbiased measures to make explicit the role of Prevalence and Bias: 

Recall   = Informedness (1−Prevalence) + Bias  
Informedness = (Recall-Bias) / (1−Prevalence)   (7) 
Precision  = Markedness (1-Bias) + Prevalence  
Markedness  = (Precision−Prev) / (1-Bias)   (8) 

Bookmaker and Markedness are unbiased estimators of above 
chance performance (relative to respectively the predicting 
conditions or the predicted markers). Recall = Precision and 
Informedness = Markedness if and only if Bias = Prevalence [5].    

We can gain further insight into the nature of these regression and 
correlation coefficients expressing them as distinct normalization of 

Table 1. Systematic and traditional notations in a contingency table.  

 +R −R     +R −R   

+P tp fp pp  +P A B A+B  

−P  fn tn pn  −P  C D C+D 

 rp rn 1    A+C B+D N 

 

 

 

 

 

 

 

Figure 1. Illustration of ROC Analysis. The main diagonal 
represents chance with parallel isocost lines representing equal 

cost-performance. Points above the diagonal represent performance 
better than chance, those below worse than chance.  
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the determinant of the contingency matrix, dp , which is a common 
numerator common across all three coefficients. Viz. Informedness 
(B) and Markedness (M) and Correlation (C) may be re-expressed in 
terms of Precision (Prec) or Recall, along with the Geometric means 
of Bias or Prevalence and their respective inverses (IBias=1- Bias, 
IPrev=1- Prev), defining respective Evenness terms that are 
maximum for even Bias or Prevalence:  

M   =  dp  / [Bias · (1- Bias)]  
 =  dp / BiasG2  = dp / EvennessP  
 = [ Precision – Prevalence] /  IBias   (9) 
B   =  dp  / [Prevalence · (1−Prevalence)]  
 =  dp / PrevG2 = dp / EvennessR 
 = [ Recall – Bias] /  IPrev     (10) 
C =  dp / [ PrevG · BiasG] = dp / EvennessG 
 =  √[(Recall−Bias)·(Prec−Prev)]/(IPrev·IBias)  (11) 

2.5 Significance and Information Gain 
The ability to calculate various probabilities from a contingency 
table says nothing about the significance of those numbers – is the 
effect real, or is it within the expected range of variation around the 
values expected by chance? Usually this is explored by considering 
deviation from the expected values (ETP and its relatives) implied 
by the marginal counts (RP, PP and relatives) – or from expected 
rates implied by the biases (Class Prevalence and Label Bias). In the 
case of Machine Learning, Data Mining, or other artificially derived 
models and rules, there is the further question of whether the training 
and parameterization of the model has set the 'correct' or 'best' 
Prevalence and Bias (or Cost) levels. Furthermore, should this 
determination be undertaken by reference to the model evaluation 
measures (Recall, Precision, Informedness, Markedness and their 
derivatives), or should the model be set to maximize the significance 
of the results? 

This raises the question of how our measures of association and 
accuracy, Informedness, Markedness and Correlation, relate to 
standard measures of significance. 

This paper has been written in the context of a Prevailing 
methodology in Computational Linguistics and Information 
Retrieval that concentrates on target positive cases and ignores the 
negative case for the purpose of both measures of association and 
significance. A classic example is saying “water” can only be a noun 
because the system is inadequate to the task of Part of Speech 
identification, so this boosts Recall and hence F-factor, or otherwise 
setting the Bias to nouns close to 1, and the Inverse Bias to verbs 
close to 0.  Of course, Bookmaker will then approach 0 and 
Markedness will be unstable (undefined, and very sensitive to any 
words that do actually get labelled verbs).  We would clearly expect 
that significance would also be 0 (or approaching zero given a 
vanishingly small number of verb labels). We would like to be able 
to calculate significance based on the positive case alone, if either 
the full negative information is unavailable, or if it is not labelled.  

Generally when dealing with contingency tables it is assumed that 
unused labels or unrepresented classes are dropped from the table, 
with corresponding reduction of degrees of freedom. For simplicity 
we have assumed that the margins are all non-zero (contra to the 
Bias=1 example), but the freedoms are there whether they are used 
or not, so we will not reduce them or reduce the table. 

The log-likelihood-based G2 test and Pearson's approximating χ2 
tests are compared against a Chi-Squared Distribution of appropriate 

degree of freedom (r =1 given the marginal counts are known), 
depend on distributional assumptions, and focus only on Positives. 
χ2 captures the Total Squared Deviation relative to expectation 

(ETP=E(TP), etc) and is here calculated only in relation to positive 
predictions, as often only the overt prediction is considered, and the 
implicit prediction of negative case is ignored: 

χ2
+P = (TP-ETP) 2/ETP + (FP-EFP) 2/EFP 

 = DTP 2/ETP + DFP 2/EFP 
 = 2DP 2/EHP, EHP = 2ETP ·EFP/[ETP+EFP] 
 = 2N ·dp2/ehp,ehp = 2etp ·efp/[etp+efp]  
 = 2N ·dp2/[rh ·pp]  =  N·dp2/ PrevG2/ Bias 
 = N·B2·EvennessR/ Bias =  N·r2

P·PrevG2/ Bias  (12)  

G2 captures Total Information Gain, being N times the Average 
Information Gain in nats, otherwise known as Mutual Information. 
We deal with G2 for positive predictions in the case of small effect, 
that is dp close to zero, where G2 is twice as sensitive as χ2.  

G2
+P/2 =  TP ·ln(TP/ETP) + FP ·ln(FP/EFP) 

 =  TP ·ln(1+DTP/ETP)+FP ·ln(1+DFP/EFP) 
 ≈   TP ·(DTP/ETP) + FP ·(DFP/EFP)  
 = 2N ·dp2/ehp,ehp = 2etp ·efp/[etp+efp]  
 = 2N ·dp2/[rh ·pp] =  N ·dp2/ PrevG2/Bias 
 = N·B2·EvennessR/Bias =  N·r2

P·PrevG2/Bias  (13) 

Our result (12-13) shows that χ2 and G2 significance of the 
Informedness effect increases with N as expected, but also with the 
square of Bookmaker, the Evenness of Prevalence (EvennessR = 
PrevG2 = Prev·(1−Prev)) and the number of Predicted Negatives (viz. 
with Inverse Bias)!  This is also as expected.  The more Informed the 
contingency regarding positives, the less data will be needed to reach 
significance.  The more Biased the contingency towards positives, 
the less significant each positive is and the more data is needed to 
ensure significance. The Bias-weighted average over all Predictions 
(here for K=2 case: Positive and Negative) is simply KN·B2·PrevG2 
which gives us an estimate of the significance without focussing on 
either case in particular. 

χ2
KB  =  2N·dtp 2/ PrevG2 = 2N ·rP2 ·PrevG2     

 =  2N·rP2 ·EvennessR      
 =  2N·B2·EvennessR     (14) 

Analogous formulae can be derived for significance of Markedness 
for positive real classes, noting that EvennessP = BiasG2 . 

χ2
KM  =  2N·dtp 2/ BiasG2 = 2N  ·rR2 · BiasG2     

 = 2N  ·rR2 ·BiasG2 
 =  2N·M2·EvennessP      (15) 

The Geometric Mean of these two overall estimates for the full 
contingency table correlation is  

χ2
KC =  2N·dtp 2/ PrevG·BiasG  

 =  2N·rP·rR ·PrevG·BiasG     
 =  2N·r2

G·EvennessG =   2NC2·EvennessG  
 =   2N·B·M ·EvennessG     (16) 

This is simply the total Sum of Squares Deviance (SSD) accounted 
for by the correlation coefficient C (11) over the N data points 
discounted by the Global Evenness factor, being the squared 
Geometric Mean of all four Positive and Negative Bias and 
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Prevalence terms (EvennessG = PrevG·BiasG). The less even the 
Bias and Prevalence, the more data will be required to achieve 
significance, the maximum evenness value of 0.25 being achieved 
with both even bias and even Prevalence. Note that for even Bias or 
Prevalence, the corresponding positive and negative significance 
estimates match the global estimate. 

When χ2
+P or G2

+P is calculated for a specific label in a 
dichotomous contingency table, it has one degree of freedom for the 
purposes of assessment of significance. The full table also has one 
degree of freedom, and summing for goodness of fit over only the 
positive prediction label will clearly lead to a lower χ2 estimate than 
summing across the full table, and while summing for only the 
negative label will often give a similar result it will in general be 
different. Thus the weighted arithmetic mean calculated by χ2

KB is 
an expected value independent of the arbitrary choice of which 
predictive variate is investigated. This is used to see whether a 
hypothesized main effect (the alternate hypothesis, HA) is borne out 
by a significant difference from the usual distribution (the null 
hypothesis, H0). Summing over the entire table (rather than 
averaging of labels), is used for χ2 or G2 independence testing 
independent of any specific alternate hypothesis, and can be 
expected to achieve a χ2 estimate approximately twice that achieved 
by the above estimates, effectively cancelling out the Evenness term, 
but is thus far less conservative (viz. it is more likely to satisfy p<α): 

χ2
C =   N·r2

G =   N·ρ2 =   N·φ2 =   N·B·M =   N·C2  (17) 

Note that this equates C corresponding to Pearson’s Rho, ρ, with 
the Phi Correlation Coefficient, φ, which is defined in terms of the 
Inertia φ2=χ2/N . We now have confirmed that not only does a factor 
of N connects the full contingency G2 to Mutual Information (MI), 
but it also normalizes the full approximate χ2 contingency to 
Matthews/Pearson Correlation (=√BM=C=Phi), for the dichotomous 
case. This tells us moreover, that MI and Correlation are measuring 
essentially the same thing, but MI and Phi do not tell us anything 
about the direction of the correlation, whilst the sign of Matthews or 
Pearson  or √BM Correlation does (since it is the Biases and 
Prevalences that are multiplied and squarerooted).  

2.6 Confidence Intervals and Deviations 
An alternative to significance estimation is confidence estimation in 
the statistical rather than the data mining sense. We noted earlier that 
selecting the highest isocost line or maximizing AUC or Bookmaker 
Informedness, B, is equivalent to minimizing fpr+fnr= (1- B) or 
maximizing tpr+tnr =(1+B), which maximizes the sum of 
normalized squared deviations of B from chance, sse B=B2 (as is 
seen geometrically from Fig. 1). Note that this contrasts with 
minimizing the sum of squares distance from the optimum which 
minimizes the relative sum of squared normalized error of the 
aggregated contingency, sse B=fpr 2+fnr 2.  However, an alternate 
definition calculating the sum of squared deviation from optimum is 
as a normalization the square of the minimum distance to the isocost 
of contingency, sse B=(1- B)2.  

This approach contrasts with the approach of considering the error 
versus a specific null hypothesis representing the expectation from 
margins. Normalization is to the range [0,1] like |B| and normalizes 
(due to similar triangles) all orientations of the distance between 
isocosts (Fig. 1). With these estimates the relative error is constant 
and the relative size of confidence intervals around the null and full 
hypotheses only depend on N as |B| and |1- B| are already 

standardized measures of deviation from null or full correlation 
respectively (σ/µ=1). Note however that if the empirical value is 0 or 
1, these measures admit no error versus no information or full 
information resp. If the theoretical value is B=0, then a full ±1 error 
is possible, particularly in the discrete low N case where it can be 
equilikely and will be more likely than expected values that are 
fractional and thus likely to become zeros. If the theoretical value is 
B=1, then no variation is expected unless due to measurement error. 
Thus |1- B| reflects the maximum (low N) deviation in the absence of 
measurement error. 

The standard Confidence Interval is defined in terms of  the 
Standard Error, SE =√[SSE/(N• (N-1 ))] =√[sse/(N-1 )]. It is usual to 
use a multiplier X of around X=2 as, given the central limit theorem 
applies and the distribution can be regarded as normal, a multiplier 
of 1.96 corresponds to a confidence of 95% that the true mean lies in 
the specified interval around the estimated mean, viz. the probability 
that the derived confidence interval will bound the true mean is 0.95 
and the test thus corresponds approximately to a significance test 
with alpha =0.05 as the probability of rejecting a correct null 
hypothesis, or a power test with beta =0.05 as the probability of 
rejecting a true full or partial correlation hypothesis. A number of 
other distributions also approximate 95% confidence at 2SE. 

We specifically reject the more traditional approach which 
assumes that both Prevalence and Bias are fixed, defining margins 
which in turn define a specific chance case rather than an isocost line 
representing all chance cases – we cannot assume that any solution 
on an isocost line has greater error than any other since all are by 
definition equivalent. The above approach is thus argued to be 
appropriate for Bookmaker and ROC statistics which are based on 
the isocost concept, and reflects the fact that most practical systems 
do not in fact preset the Bias or match it to Prevalence, and indeed 
Prevalences in early trials may be different from those in the field.  

he specific estimate of sse that we present for alpha , the 
probability of the current estimate for B occurring if the true 
Informedness is B=0, is √sse B0=|1- B|=1, which is appropriate for 
testing the null hypothesis, and thus for defining unconventional 
error bars on B=0. Conversely, √sse B2=|B|=0, is appropriate for 
testing deviation from the full hypothesis in the absence of 
measurement error, whilst √sse B2=|B|=1 conservatively allows for 
full range measurement error, and thus defines unconventional error 
bars on B=M=C=1.  

In view of the fact that there is confusion between the use of beta  
in relation to a specific full dependency hypothesis, B=1 as we have 
just considered, and the conventional definition of an arbitrary and 
unspecific alternate contingent hypothesis, B≠0, we designate the 
probability of incorrectly excluding the full hypothesis by gamma, 
and propose possible kinds of heuristic for the √sse  for beta  
(which will typically be assumed to relate to the empirical estimate 
as the true value). We can use a mean of |B| and 1- |B| (the 
unweighted arithmetic mean is 0.5, the geometric mean is less 
conservative and the harmonic mean even less conservative, the 
maximum being extremely conservative, and the minimum too low 
an underestimate in general. Note that we allow an asymmetric 
interval that has one value on the null side, another on the full side.  

The √sse  means may be weighted or unweighted and in particular 
a self-weighted arithmetic mean gives our recommended definition, 
√sse B1=1- 2|B|+2B2, with a minimum of 0.5 at B=±0.5 and a 
maximum of 1 at both B=0 and B=±1. 

Using Monte Carlo simulations (Fig. 2), we have observed that 
setting sse B1= √sse B2=1- |B| as per the usual convention is 
appropriately conservative on the upside but a little broad on the 
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downside, whilst the weighted arithmetic mean, 
√sse B1=1- 2|B|+2B2, is sufficiently conservative on the downside, 
but too conservative for high B. 

Note that these two-tailed ranges are valid for Bookmaker 
Informedness and Markedness that can go positive or negative, but a 
one tailed test would be appropriate for unsigned statistics or where a 
particular direction of prediction is assumed as we have for our 
contingency tables. In these cases a smaller multiplier of X=1.65 
would suffice, however the more conservative convention is to use 
the overlapping of the confidence bars around the various 
hypotheses (although usually the null is not explicitly represented). 

3 DISCUSSION AND CONCLUSIONS 

In Machine Learning it is usual to try many different algorithms on a 
problem, whether from a repository or for a challenging application. 
This leads to a strong probability that a spurious improvement will 
be found if o(1/α) approaches are tested. The Bonferonni approach is 
overly conservative and even the Benjamini-Hochberg approach of 
reducing alpha progressively disadvantages later researchers if 
natural order rather than p order is used [10], and is impossible to 
apply properly between two systems given only p-values versus H0. 
However, the publication of confidence intervals allows the 

calculation of p-values between systems and hence the proper 
application of Benjamini-Hochberg if required. 

For any two hypotheses (including the null hypothesis, or one from 
a different contingency table or other experiment deriving from a 
different theory or system) the traditional approach of checking that 
1.95SE (or 2SE) error bars don’t overlap is too conservative: it is 
enough for the value to be outside the range for a two-sided test as 
between competing systems, whilst checking overlap of 1SE error 
bars is usually insufficiently conservative given that the upper 
represents beta <alpha . Where it is predicted that a given system 
will be better than the other, a 1.65SE error bar including the mean 
for the other hypothesis is enough to indicate significance (and 
power=1-beta ) corresponding to alpha  (resp. beta ) as desired.  

The traditional calculation of error bars based on Sum of Squared 
Error is closely related to the calculation of Chi-Squared 
significance based on Total Squared Deviation, and like it are not 
reliable when the assumptions of normality are not approximated, 
and in particular when the conditions for the central limit theorem 
are not satisfied (e.g. N<12 or cell-count<5). They are not 
appropriate for application to probabilistic measures of association 
or error. This is captured by the meeting of the X=2 error bars for the 
full (sse B2) and null (sse B0) hypotheses at N=16 (expected count 
of only 4 per cell), as shown in Fig. 2. 

The proposed direct calculation of significance from the 
‘Bookmaker’ measures, and the more robust approach using 
confidence intervals as error bars, gives a direct indication of 
significance without the need for expensive cross-validation.  Of 
course, a one-fits-all generic approach does not take into account the 
specific problem, the priors, or the actual theoretical and empirical 
distributions, and where marginal significance is indicated a more 
accurately targeted methodology would be indicated. 
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Figure 2. Accuracy of significance and confidence measures.  
110 Monte Carlo simulations with 11 stepped expected Informedness 

levels (probability of correct decision versus random binomial decision 
and random margins) with calculated Informedness, Markedness and 

Correlation versus Phi calculated from G2 and χ2 and confidence 
intervals based on beta  (power: √sse B1=1- 2|B|+2B2), alpha  and 

gamma (null & full significance: √sse B0=√sse B1=1). p-values based 
on G2 and χ2 and point and cumulative Fisher Test are shown +1. 
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