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Abstract Medical Sciences, Receiver Operating Characteristics
) ) _ ROC) analysis has been borrowed from Signal Proagssin

Commonly used evaluation measures including Recag pecome a standard for evaluation and standard setting,
Precision, F-Factor, Rand Accuracy and Cohen Kappa @inparing True Positive Rate and False Positive Rate.
biased and should not be used without clear understanding Behavioral Sciences, Specificity and Sensitivtye

of the biases, and corresponding identification ofchancecommomy used. Alternate techniques, such as Rand
base case levels of the statistic. Using these mesasu Accuracy and Cohen Kappa, have some advantages but
system that performs worse in the objective sense g nonetheless still biased measures. We will ietae
Informedness, can appear to perform better under anysgine of the literature relating to the problems wiitbse
these commonly used measures. We discuss severahsures, as well as considering a number of other
concepts and measures that reflect the probabligy t techniques that have been introduced and argued within

prediction is informed versus chance. Informedness apgch of these fields, aiming/claiming to address the
introduce Markedness as a dual measure for the prdabiliroplems with these simplistic measures.

that prediction is marked versus chance. Finally we ) ) ) )
demonstrate elegant connections between the conceptd [ Paper recapitulates and reexamines the relationships
Informedness, Markedness, Correlation and SignificanBgtween these various measures, develops new insights
as well as their intuitive relationships with Recafida INto the problem of measuring the effectiveness of an
Precision, and outline the extension from the dichotomo@§Pirical decision system or a scientific experiment,
case to the general multi-class case. analyzing and introducing new probabilistic and
information theoretic measures that overcome the

Keywords: Recall, Precision, F-Factor, Rand Accuracyyroblems with Recall, Precision and their derivatives.
Cohen Kappa, Chi-Squared Significance, Log-Likelihood

Significance, Matthews Correlation, Pearson Con@at 2  The Binary Case

Evenness, Bookmaker Informedness and Markedness ) ) _
It is common to introduce the various measures in the

1 Introduction context of a dichotomous binary classification problem

) ) where the labels are by convention + and - and the
A common but poorly motivated way of evaluating resultgregictions of a classifier are summarized in a four cel
of Machine Learning experiments is using Recalontingency table. This contingency table may be
Precision and F-factor. These measures are named d@hressed using raw counts of the number of times each
their origin in Information Retrieval and present specifi predicted label is associated with each real classagibe
biases, namely that they ignore performance in coyrecixpressed in relative terms. Cell and margin labelsbeay
handling negative examples, they propagate thgrmal probability expressions, may derive cell
underlying marginal prevalences and biases, and they failpressions from margin labels or vice-versa, may use
to take account the chance level performance. In t'&‘?phabetic constant labedsb, ¢, d orA,B,C,D
or may use acronyms for the generic terms for True and
False, Real and Predicted Positives and Negativesen Of
This is an extension of papers presented at the 2003 Interalati UPPER CASE is used where the values are counts, and
Cognitive Science Conference and the 2007 Humdower case letters where the values are probabilitie
Communication Science SummerFest. Both papers, along wisiioportions relative t&l or the marginal probabilities - we

scripts/spreadsheets to calculate many of the statdiScussed, wjll adopt this convention throughout this paper (always
may be found dtttp://david.wardpowers.info/BM/index.htm



http://david.wardpowers.info/BM/index.htm

+R -R +R -R

+P tp fp pp +P A B A+B
-P fn tn pn -P C D C+D
rp m 1 A+C B+D N

Table 1. Systematic and traditional notationsin a binary contingency table. Colour coding indicates correct
(green) and incorrect (pink) rates or countsin the contingency table.

written intypewriterfont ), and in addition will use cases th&P rule picks up. It tends not to be very highly
Mixed Case (in the normal text font) for popularvalued in Information Retrieval (on the assumptions that
nomenclature that may or may not correspond dir¢otly there are many relevant documents, that it doesnly real
one of our formal systematic names. True and Falseatter which subset we find, that we can't know laing
Positives TP/FP) refer to the number of Predictedabout the relevance of documents that aren't returned)
Positives that were correct/incorrect, and simjldidr  Recall tends to be neglected or averaged away in Machine
True and False NegativeSN/FN), and these four cells Learning and Computational Linguistics (where the focus
sum toN. On the other hanigp,fp,fn,tn andrp, is on how confident we can be in the rule or claggifie
rn  and pp, pn refer to the joint and marginal However, in a Computational Linguistics/Machine
probabilities, and the four contingency cells and the twTranslation context Recall has been shown to havga ma
pairs of marginal probabilities each sum to 1. We willveight in predicting the success of Word Alignment
attach other popular names to some of these probabilitigraser & Marcu, 2007). In a Medical context Recall is
in due course. moreover regarded as primary, as the aim is to identify a

Real Positive cases, and it is also one of thedagshich

we .th!JS make the ;pecmc_ assumptlp_ns that _we_a%c analysis stands. In this context it is referred to as
predicting and assessing a single condition that is elth.Fl’

- ; h rue Positive Ratetgr ). Recall is defined, with its
positive or negative (dichotomous), that we have ON& Lious common appellations, by equation (1):
predicting model, and one gold standard labeling. Unless ' '
otherwise noted we will also for simplicity assume that Recall = Sensitivity= tpr = tp/rp

contingency is non-trivial in the sense that both pasiti = TP /RP=A/(A+C) (1)
and negative states of both predicted and real consgliti
occur, so that none of the marginal sums or probadsilig

Zero.

0E,lonversely, Precision or Confidence (as it is cafiddata
Mining) denotes the proportion of Predicted Positiveesa
that are correctly Real Positives. This is what Mae
We illustrate in Table 1 the general form of a binaryearning, Data Mining and Information Retrieval focus on,
contingency table using both the traditional alphabetiout it is totally ignored in ROC analysis. It can hoee
notation and the directly interpretable systematic@gogr. analogously be called True Positive Accuratya(),
Both definitions and derivations in this paper are madeing a measure of accuracy of Predicted Positives in
relative to these labellings, although English termg. (e.contrast with the rate of discovery of Real Positives
from Information Retrieval) will also be introducedr fo (tpr ). Precision is defined in (2):
various ratios and probabilities. The green positivBrecision - Confidencetoa = to/
diagonal represents correct predictions, and the pink - _ pa = tp/pp

: . . - I = TP /PP= A/(A+B) (2)
negative diagonal incorrect predictions. The predictains
the contingency table may be the predictions of arjheo These two measures and their combinations focus only on
of some computational rule or system (e.g. an Expdfe positive examples and predictions, although between
System or a Neural Network), or may simply be a dire¢them they capture some information about the ratds an
measurement, a calculated metric, or a latent conditickinds of errors made. However, neither of them captures
symptom or marker. We will refer generically to "theany information about how well the model handles
model" as the source of the predicted labels, and "tihhegative cases. Recall relates only to#Recolumn and
population” or "the world" as the source of the redPrecision only to th&P row. Neither of these takes into
conditions. We are interested in understanding to whatcount the number of True Negatives. This also applies
extent the model "informs" predictions about theo their Arithmetic, Geometric and Harmonic MeansGA
world/population, and the world/population "marks‘and F=G2/A (the F-factor or F-measure). Note that th
conditions in the model. F-measure effectively references the True Positivélse

Arithmetic Mean of Predicted Positives and Real Positives

2.1 Recall & Precision, Sensitivity & Specificity  being a constructed rate normalized to an idealized value.
The Geometric Mean of Recall and Precision (G-measure)

Recall or Sensitivity (as it is called in Psychologg/the Effectively normalizes TP to the Geometric Mean of

proportion of Real Positive cases that are correct
Predicted Positive. This measures the Coverage of t
Real Positive cases by th® (Predicted Positive) rule. Its
desirable feature is that it reflects how many of dievant

éedicted Positives and Real Positives, and itsrmtion
content corresponds to the Arithmetic Mean of the

Information represented by Recall and Precision.
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In fact, there is in principle nothing special about theontrast,pp represents the (label) Bias of the model
Positive case, and we can define Inverse statistiesiins  (Lafferty, McCallum and Pereira, 2002), the tendency of
of the Inverse problem in which we interchange positivlhe model to output positive labeRP/N, and is directly
and negative and are predicting the opposite casersev under the control of the experimenter, who can change the
Recall or Specificity is thus the proportion of Realmodel by changing the theory or algorithm, or some
Negative cases that are correctly Predicted Negative (Barameter or threshold, to better fit the world/population
and is also known as the True Negative Rateeing modeled. Note that F-factor effectively refessnc
(tnr ). Conversely, Inverse Precision is the proportibn dp (probability or proportion of True Positives) to the
Predicted Negative cases that are indeed Real Negativeghmetic Mean of Bias and Prevalence. A common rule
(4), and can also be called True Negative Accurmey :  of thumb, or even a characteristic of some algorittisrts,
parameterize a model so that Prevalercdias, viz.

Inverse Recall _ ;l\tI%N _=|;r/1(/|;n+D) 3) rp=pp . Corollaries of this setting are RecalPrecision
L T (=A=G=F) , Inverse Recall = Inverse Precision and
Inverse Precision =tna =tn/pn Fallout = Miss Rate
=TN/PN =D/(C+D) 4) B '

Alternate characterizations of Prevalence are in gesm

Rand__Acpuracy s e_:xplicitly _takes intq account the(‘)ddsrp/rn (Powers, 2003) and Skew or Class Ratio
classification of negatives, and is expressible (¥) s a G5 = mirp (Flach 2603) recalling that by definition

welghted_average of Precision and Inverse Precision arnd+rn=1 andRN+RP=N... If the distribution is highly
as a weighted average of Recall and Inverse Recaf&

Conversely, the Jaccard or Tanimoto similarity coedfit Skewed, typically there are many more negative casas tha

explicitly ignores the correct classification of neges positive, this means the number of errors due to poor
pucily 19 Y Inverse Recall will be much greater than the number of

(TN): errors due to poor Recall. Given the cost of both False
Accuracy =tea =ter =tp+tn Positives and False Negatives is equal, individually, the
= rp*tpr+rn*tnr overall component of the total cost due to False Pesitiv
= pp*tpat+pn*tna = (A+D)/N (5 (as Negatives) will be much greater at any signifidawsl
Jaccard 2p/(tp+fn+fp) = TP/(N-TN) of chance performance, due to the higher prevalence of
= A/(A+B+C) = A/(N-D) (6) Real Negatives.

Each of the above also has a complementary form definifgte that the normalized binary contingency table with
an error rate, of which some have specific names andspecified margins has three degrees of freedom - setting
importance: Fallout or False Positive Rdffar () are the any three non—-Redundant ratios determines the rest
proportion of Real Negatives that occur as Predictddetting any count supplies the remaining information to
Positive (ring-ins); Miss Rate or False Negative Rfme ) recover the original table of counts with its four degreie

are the proportion of Real Positives that are Pratlictdreedom). In particular, Recall, Inverse Recall and
Negatives (false-drops). False Positive Rate is tbense Prevalence, or equivalently tpr, fpr amd, suffice to

of the legs on which ROC analysis is based. determine all ratios and measures derivable from the
normalized contingency table, bl is also required to

Fallout -:F goerP f pr//( r§+D) Ko determine significance. As another case of specifiarést,
Miss Rate _: fnr ;fn/rn Precision, Inverse Precision and Bias, in combination
= FN/RN = C/(A+C) ®) suffice to determine all ratios or measures, although w

will show later that an alternate characterization of
Note that FN and FP are sometimes referred to as [TypPrevalence and Bias in terms of Evenness allowsvien
and Type |l Errors, and the ratless andfp as alpha and simpler relationships to be exposed.

giiae' tirr?sgeﬁtlvilt)rqe-sisrefhe/lrélggcotr?egzlSeth/esreejte ctmg We can also take into account a differential value for
bting a hyp ' Y expp 8ositives ¢p) and negativescH) - this can be applied to

specifically to the meta-level problem discussed later ;
. . errors as a cost (loss or debit) and/or to corree@scas a
whether the precise pattern of counts (not rateshén t__. ) . : ) )
ain (profit or credit), and can be combined into a sing|

contingency table fit the null hypothesis of randon?:Ost Ratioc, = cnicp . Note that the value and skew

distribution rather than reflecting the effect of some : C
. . L ; determined costs have similar effects, and may be
alternative hypothesis (which is not in general the one

represented by eithéP-> +R or=P-> =R or both) multiplied to produce a single skew-like cost factor
P y " c=c Cs. Formulations of measures that are expressed

22 Prevalence, Bias, Cost & Skew usi_ng tpr, fpr_ ands may be r_nade cost-sensitive by using
cC=cC ,Cs in place ofc = ¢ 4 or can be made

We now turn our attention to various forms of bias thatkew/cost-insensitive by usireg=1 (Flach, 2003).

detract from the utility of all of the above surfaceasieres

(Reeker, 2000). We will first note thgt represents the 2.3 ROC and PN Analyses

Prevalence of positive cas&P/N, and is assumed to be a

property of the population of interest - it may be constar’t:,laCh (2003) has highlighted the utility of ROC analysis to

or it may vary across subpopulations, but is regarded hdf¢ Machine Learning community, and characterized the
as not being under the control of the experimenter. ByEW Sensitivity of many measures in that context,
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model and/or accuracy measure defines an isocost gradient,

q which for a skew and cost insensitive model willcbd ,

........... ' and hence another common approach is to choose a
/good : tangent point on the highest isocost line that touches th
curve. The simple condition of choosing the point an th
curve nearest the optimum point (0,1) is not commonly
;' used, but this distance to (0,1) is giverNff¢  fpr)2  +
H (1-tpn)2] , and minimizing this amounts to minimizing
/ fpr 2+fnr 2.

tor 4best

chanc

, A ROC curve with concavities can also be locally

Pt interpolated to produce a smoothed model following the

. -7 convex hull of the original ROC curve. It is even gbke

el to locally invert across the convex hull to repair

e concavities, but this may overfit and thus not generdtz

. ] unseen data. Such repairs can lead to selecting an

! wors{ improved model, and the ROC curve can also be used to
fpr return a model to changing prevalence and costs. Bae ar

Figure 1. [llustration of ROC Analysis. The diagonal under such a multipoint curve is thus of some value, but
line represents chance, points above the diagonal represent  the optimum in practice is the area under the simple
performance better than chance, those bel ow worse than trapezoid defined by the model:
chance. For a single system, AUC is the area under the
curve (trapezoid formed between the point and the x-axis). ~ AUC = (tpr-fpr+1)/2
The perverse system shown is the same (good) system = (tpr+tnr)/2
applied to a problem with class labels reversed. =1 - (fpr+fnr)/2 9)

utilizing the ROC format to give geometric insights intd=or the cost and skew insensitive case, witil,
the nature of the measures and their sensitivitkéws maximizing AUC is thus equivalent to maximizing
Furnkranz & Flach (2005) have further elaborated thigr-for or minimizing fpr+fnr . The chance line

analysis, extending it to the unnormalized PN varidnt g¢orresponds tepr-for =0, and parallel isocost lines for
=k. The highest isocost line

ROC, and targeting their analysis specifically to rulé=1 have the forntpr-fpr
learning. We will not examine the advantages of RO@Iso maximizedpr-for ~ and AUC so that these two
Minimizirfgr 2+fnr 2

analysis here, but will briefly explain the principlasd approaches are equivalent.
recapitulate some of the results. instead corresponds to a distance-minimization heuris

ROC analysis plots the ratpr against the ratéor ,

We now summarize relationships between the various

whilst PN plots the unnormalize@P againstFP. This candidate accuracy measures as rewritten ir_1 tertps, of
difference in normalization only changes the scate$ afpr and the skewg (Flach,2003), as well in terms of
gradients, and we will deal only with the normalizedrfor Recall, Bias and Prevalence:

of ROC analysis. A perfect classifier will score in tbp Accuracy = [tpr+c-(1-fpn)[L+c]
left hand corner fpr=0,tpr=100% ). A worst case = 2.Recall-Prevl- Bias-Prev (10)
classifier will score in the bottom right hand CATNEpracision = tpr/[tpr-+c-fpr]

(fpr=100%,tpr=0 ). A random classifier would be -  Recall-Prev/Bias (11)
expected to score somewhere along the positive diago'fl@Measure = 24pr/[tpr+c-for+i]

(tpr=fpr ) since the model will throw up positive and = 2.Recall-Prev/[Bias+Prev] (12)
negative examples at the same rate (relative t0 the{fnacc 4c-[tpr-fpr)/[1+c]2
populations - these are Recall-like scatps= Recall, 4] Recall Bias]-Prev (13)

1-fpr = Inverse Recall). For the negative diagonal
(tpr+c*fpr=1 ) corresponds to matching Bias toThe last measure, Weighted Relative Accuracy, was

Prevalence for a skew of defined by Lavrac, Flach & Zupan (1999) to subtract off
. he component of the True Positive score that is

The ROC plot aII(_)ws_ us to compare classifiers (mode itributable to chance and rescale to the rangeNgdte

and/or parameterizations) and choose the one thatis, maximizing WRacc is equivalent to maximizing AUC

closest to (0,1) and furtherest frapr=fpr  in some 4o = 2.AUC-1, ax is constant. Thus WRAcc
sense. These conditions for choosing the optim@ 5, nhiased accuracy measure, and the skew-insensiti
parameterization or model are not identical, and intfex form of WRAcc, withc=1, is preciselytpr-fpr Each

most common condition is to_ minimize the area gnder ”bef the other measures (10-12) shows a bias in that it can
curve (AUC),_whlch for a single parameterlzatlon of 3ot be maximized independent of skew, although
model is defined by a single point and the segmenige,, insensitive versions can be defined by settir.
connecting it to (0,0) and (1,1). For a parameterizeryg yocasting of Accuracy, Precision and F-Measure in
model it will be a monotonic function conS|st|_ng af terms of Recall makes clear how all of these vaty on
sequence of segments from (0,0) to (1,1). A particular cQghms of the way they are affected by PrevalenceSias]
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Prevalence is regarded as a constant of the targgitioon Informedness = Recall + Inverse Reeall

or data set (andc = [1-Prev])/Prev ), whilst = tpr-fpr (14)
parameterizing or selecting a model can be viewed Markedness = Precision + Inverse Precisidh
terms of trading ofpr andfpr as in ROC analysis, or = tpa-fna (15)

equivalently as controlling the relative number of pesit We noted above that maximizing AUC or the unbiased

and_ne_gatlve p_redlctlons, namely the Bias, in orde_r WRACC measure effectively maximized tpr-fpr and indeed
maximize a particular accuracy measure (Recall, §loexi WRAcc reduced to this in the skew independent

F-Measure, Rand Accuracy and AUC). Note that for a

particular Recall level, the other measures (11-14) apse: This is not SUrprising given both Powers aadI“F_I
set out to produce an unbiased measure, and the linear

decrease with increasing Bias towards poSitivgefinition of Informedness will define a uni li
predictions. . : que finear

form. Note that while Informedness is a deep meadure o
24 DdtaP, | nformedness and M arkedness how (_:o_nsistently the Predictor predicts the Outcome by

combining surface measures about what proportion of
Powers (2003) also derived an unbiased accuracy measongcomes are correctly predicted, Markedness is a deep
to avoid the bias of Recall, Precision and Accuracy due imeasure of how consistently the Outcome has the
population prevalence and label bias. The Bookmak®redictor as a Marker by combining surface measures
algorithm costs wins and losses in the same way a faibout what proportion of Predictions are correct.

bookmaker would set prices based on the odds. Pow?rsthe Psychology literature, Markedness is known as

then defines the concept of Informedness which represefis. .5 and is emoirically a aood predictor of human
the 'edge’ a punter has in making his bet, as evidenced and P yag P

o SR A ssociative judgements - that is it seems we develop
guantified by his winnings. Fair pricing based on correc o . : )
. . . associative relationships between a predictor and an
odds should be zero sum - that is, guessing will leaue y

with nothing in the long run, whilst a punter with cantai outcome when DeltaP is high, and this is true even when

. . . . multiple predictors are in competition (Shanks,

knowledge will win every time. Informedness is th :
. . . ; 995). Perruchet and Peereman (2004), in the context of
probability that a punter is making an informed bet and is . : : ; .
) . - . experiments on information use in syllable processing,
explained in terms of the proportion of the time the edgé " .
. ote that Schanks sees DeltaP as "the normative neeasu

works out versus ends up being pure guesswork. Powers

defined Bookmaker Informedness for the gendtddbel, of cgptmgency, but propose a complem_e n_tary, backV\{ard,
. : : additional measure of strength of association, DeltaP' aka
case, but we will defer discussion of the general t@se

. . . Informedness. Perruchet and Peeremant also note the
now and present a simplified formulation of Informednes

analog of DeltaP to regression coefficient, and that th
as well as the complementary concept of Markedness. : : .
Geometric Mean of the two measures is a dichotomous

Definition 1 form of the Pearson correlation coefficient, the thiietvs'
Correlation Coefficient, which is appropriate unless a
Informedness quantifies how informed a predictor is  continuous scale is being measured dicotomously in which
for the specified condition, and specifies the  case a Tetrachoric Correlation estimate would be
probability that a prediction isinformed inrelationto  appropriate, as discussed by Bonnet and Price (2005).
the condition (versus chance).

2.5 Causality, Correlation and Regression

Definition 2
In a linear regression of two variables, we seek ¢alipt
Markedness quantifies how marked a conditionisfor  one variabley, as a linear combination of the other, X,
the specified predictor, and specifies the probability  finding a line of best fit in the sense of minimizitig sum
that a condition is marked by the predictor (versus  of squared error (in y). The equation of fit has the form
chance).
Y =Y o+l X where
Thes_e _defmmons are aligned W|th_t_he psychological and - M Yxy-Yx Syl Yx*-Yx ¥ (16)
linguistic uses of the terms condition and marker. TheX
condition represents the experimental outcome we apélbstituting in counts from the contingency table, for the
trying to determine by indirect means. A marker ofegression of predictingR (1) versus-R (0) given+P (1)
predictor (cf. biomarker or neuromarker) represents tiersus =P (0), we obtain this gradient of best fit
indicator we are using to determine the outcome. Tisere(Minimizing the error in the real values R)-
no implication of causality - that is something we will, » AD - BC]/ [(A+B)(C+D)]
address later. However there are two possible directbn =A/(A+B) - C/(C+D)
|mpI|_cat|on we W|_II address_ now. Detection qf the = DeltaP' = Markedness (17)
predictor may reliably predict the outcome, with or
without the occurrence of a specific outcome conditiofronversely, we can find the regression coefficiemt fo
reliably triggering the predictor. predicting P from R (minimizing the error in the

) predictions P):
For the binary case we have

Powers 5 Evaluation: From Precision, Recall and F-Factor



re JAD - BC]/ [(A+C)(B+D)] B = dtp / [Prevalence - @Prevalence)]
=A/(A+C) - B/(B+D) = dip/ PrevG=dtp/  Evenness
= DeltaP = Informedness (29) =[ Recall- Bias]/ IPrev (21)

Finally we see that the Matthews correlation is defiib@y Simlarly the Matthews/Pearson correlation is expiegse
fe =[AD-BC]/ V[(A+C)(B+D)(A+B)(C+D)] reduced form as the Geometric Mea_m_of Bopkmaker

= Correlation =\[Informedness-Markedness] (19)Informedness and Markednegs, abbrg\/_|at|ng their product

as BookMark (BM) and recalling that it is BookMark that
Given the regressions find the same line of bestifégse acts as a probability-like coefficient of determinatioot
gradients should be reciprocal, defining a perfedts root, the Geometric Mean (BookMarkG or BMG):
Correlation of 1. Hovyg\_/er, _both Informedness anglvIG = dip / ~[Prev- (EPrev) - Bias - (1Bias)]
Markedness are probabilities with an upper bound of 1, SO~ _ :
: . ; = dtp/[ PrevG - BiasG

perfect correlation requires perfect regression. The — _ dtp / Evennesg
squared correlation is a coefficient of proportionality _ ; .
indicating the proportion of the variance in R that is = VI(Recal-Bias)- (PreePrev)}/(IPrev-IBias) (22)
explained by P, and is traditionally also interpretecaasThese equations clearly indicate how the Bookmaker
probability. We can now interpret it either as thanfo coefficients of regression and correlation depend only on
probability that P informs R and R marks P, given that t the proportion of True Positives and the Prevalenck an
two directions of predictability are independent, or as th&ias applicable to the respective variables. Furtbeem
probability that the variance is (causally) explaine®rev - Bias represents the Expected proportion of True
reciprocally. Psychologists traditionally explain DeltaP Positives étp ) relative to N, showing that the coefficients
terms of causal prediction, but it is important to rtbee  each represent the proportion of Delta True Posifitres
the direction of stronger prediction is not necessahidy t deviation from expectatiomtp=tp-etp ) renormalized
direction of causality, and the fallacy of abductiven different ways to give different probabilities. Eqoat
reasoning is that the truth of & B does not in general (20-22) illustrate this, showing that these coefficients
have any bearing on the truth ofB A. depend only ordtp and either Prevalence, Bias or their
combination. Note that for a particuladtp these
coefficients are minimized when the Prevalence and/or
Bias are at the evenly biased 0.5 level, however in a
SFearning or parameterization context changing the
Prevalence or Bias will in general change bigth and
etp , and hence can chand® .

If Pi is one of several independent possible caus®&; of
Pi -> Ris strong, buR -> Piis in general weak for any
specificPi. If Pi is one of several necessary contributin
factors toR, Pi -> R is weak for any singlPi, butR ->

Pi is strong. The directions of the implication are thas
in general dependent.

It is also worth considering further the relationshiphef
denominators to the Geometric Means, PrevG of
Prevalence and Inverse Prevalence (IPrev—£rdv is
prevalence of Real Negatives) and BiasG of Bias and
Inverse Bias (IBias = -Bias is bias to Predicted
Negatives). These Geometric Means represent the
Evenness of Real classes (EvengessPrev@) and
Predicted labels (Evenngss BiasG). We also introduce
the concept of Global Evenness as the Geometric Mean o
these two natural kinds of Evenness, Evenpile$ssom

We can gain further insight into the nature of thesthis formulation we can see that for a given relatiiéade
regression and correlation coefficients by reduciegdip of true positive prediction above expectatiaitp(), the

and bottom of each expression to probabilities (digdiy correlation is at minimum when predictions and outesm
NP, noting that the original contingency counts sum to Nyre both evenly distributed/Evennesg = VEvennesg =

and the joint probabilities after reduction sum to He T VEvenness = Prev = Bias = 0.5), and Markedness and
numerator is the determinant of the contingency matriBookmaker are individually minimal when Bias resp.
and common across all three coefficients, reducimjgqg  Prevalence are evenly distributed (viz. Bias respv Bre
whilst the reduced denominator of the regressioD.5). This suggests that setting Learner Bias (and
coefficients depends only on the Prevalence or Bidseof tregularized, cost-weighted or subsampled Prevalence) to
base variates. The regression coefficients, Bookmak@i5, as sometimes performed in Artificial Neural Networ
Informedness (B) and Markedness (M), may thus Weaining is in fact inappropriate on theoretical grourads,
re-expressed in terms of Precision (Prec) or Realalhg has previously been shown both empirically and based on
with Bias and Prevalence (Prev): Bayesian principles - rather it is best to use LeaBias =

M = dip / [Bias - (% Bias)] Natural Prevalence which is in general much less than 0.5

= dip/ BiasG =dtp/  Evenness (Lisboa and Wong, 2000).

=[ Precision- Prevalence] IBias (20) Note that in the above equations (20-22) the denominator
is always strictly positive since we have occurrerares
predictions of both Positives and Negatives by earlier

In terms of the regression to R from P, since there are
only two correct points and two error points, and eraoes
calculated in the verticalR) direction only, all errors
contribute equally to tilting the regression down frdra t
ideal line of fit. This Markedness regression thus plesi
information about the consistency of the Outcome imser
of having the Predictor as a Marker - the errors measur
from the Outcom®R relate to the failure of the Mark®

to be present.
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assumption, but we note that if in violation of thignterpretation in terms of GeometricMean is preferasd
constraint we have a degenerate case in which therears estimate of central tendency that more accurately
nothing to predict or we make no effective predictiornth estimates the mode for well distributed (e.g. Poisdatg,
tp=etp anddtp=0 , and all the above regression andind as the central limit of the family of Lp based agess
correlation coefficients are defined in the limit(note that the Geometric Mean is the Geometric M#an
approaching zero. Thus the coefficients are zero if atige Harmonic and Arithmetic Means).

only if dtp is zero, and they have the same sigdtps

otherwise. Assuming that we are using the model tin rig2.6 ~ Effect of Bias& Prev on Recall & Precision

way round, therdtp , B and M are non-negative, and
BMG is similarly non-negative as expected. If the maslel

the wrong way round, thedtp , B, M and BMG can to tpr (Recall) ortpa (Precision). We now recast the

indicate this by expressing below chance performancgbokmaker Informedness and Markedness equations to

negative regressions and negatl\_/e correlation, and we Ebw Recall and Precision as subject (23-24), in order to
reverse the sense Bfto correct this.

explore the affect of Bias and Prevalence on Recall an

The unnormalized determinant of the contingency matri®recision, as well as clarify the relationship of Bookera
dp=dtp , in these probability formulae (20-22) also hasnd Markedness to these ubiquitous and iniquitous
a geometric interpretation as the area of a trapemoid measures.
PN-space, the unnormalized variant of ROC (Furnkranz _ :

) . ecall = Bookmaker (1-Prevalence) + Bias
Flach, 2005). We already observed that in (normahzegookmalker - (Recall-Bias) / (1-Prevalence) 28)
ROC analysis, (normalized) Informedness is twice the
triangular between a positively informed system and tHerecision = Markedness (1-Bias) + Prevalence
chance line, and it thus corresponds to the area of thkarkedness = (Precision—-Prev) / (1-Bias) (29)

trapezoid defined by a sys_tem (assumed tg perform Bokmaker and Markedness are unbiased estimators of
worse than chance), and its perversions (interchangin

o . SBove chance performance (relative to respectively the
prediction labels but not the real classes, or viceayeso - i : .
. predicting conditions or the predicted markers). Equations
as to derive a system that performs no better tharcehan L
; : o . (23-24) clearly show the nature of the bias introduced by
and the endpoints of the chance line (the trivial case

: both Label Bias and Class Prevalence. If operating at
which the system labels all cases true or conveedketye .
o . L chance level, both Bookmaker and Markedness will be
labeled false). This kite-shaped area is delimited by the - o
. : o zéro, and Recall, Precision, and derivatives suchhas t
dotted (system) and dashed (perversion) lines in Fibure

LS . F-measure, will merely reflect the biases. Notet tha
The Informedness of the perversion is the negatidgheof . . : : .
. increasing Bias or decreasing Prevalence increasefi Reca
Informedness of the correctly polarized system.

and decreases Precision, for a constant level of umbiase
We can now also express the Informedness amp@rformance. We can more specifically see that the
Markedness forms of DeltaP in terms of deviations fromegression coefficient for the prediction of Redadm
expected values along with the Harmonic mean of tHerevalence is —Bookmaker and from Bias is +1, and
marginal cardinalities of the Real classes or Predictsimilarly the regression coefficient for the pretint of
labels respectively, definingP,DELTAP,RH,PH and Precision from Bias is —Markedness and from Prevalenc
related forms in terms of thel-Relative probabilistic is +1.

forms defined as follows:

The final form of the equations (20-22) cancels out the
common Bias and Prevalence (Prev) terms, convetging

In summary, Recall reflects the Bias plus a discounted
etp =rp - pp; etn =rn - pn (23) estimation of Informedness and Precision reflects the
Prevalence plus a discounted estimation of Markedness.

dp _=t|? d-tr?tf-_(tgtf)etn) Given usually Prevalence << % and Bias << %, their
deltap = dtp - dtn = 2dp (24) complements Inverse Prev_alencg >> % and Inverse Bias
>> Y5 represent substantial weighting up of the true
rh =2rp - rn/ [rp+rn] unbiased performance in both these measures, and hence
ph=2pp-pn/[pp+pn] (25) also in F-factor. High Bias drives Recall up stronghd

Precision down according to the strength of Informedness
ﬁigh Prevalence drives Precision up and Recall down
according to the strength of Markedness.

DeltaP' or Bookmaker Informedness may now b
expressed in terms afeltap andrh, and DeltaP or
Markedness analogously in termgeftap andph:
Alternately, Informedness can be viewed as a
= etp/rp - efp/m + 2dtp/rh renormalization of Recall after subtracting off thiasf_s
= 2dpirh = deltap/rh (26) and _l\/_larkedness can _be seen as a renormallza7t|on of
Precision after subtracting off the Prevalence @adh’s
M = DeltaP= 2dp/ph = deltap/ph (27) WRAcc, the unbiased form being equivalent to
Bookmaker Informedness, was defined in this way as
%iscussed in 82.3). The Kappa measure (Cohen,
a1960/1968; Carletta, 1996) commonly used in assessor
agreement evaluation was similarly defined as a

B = DeltaP'= [etp+dtp]/rp - [efp-dtp]/rn

These Harmonic relationships connect directly with th
previous Geometric relationships by observing th
ArithmeticMean = GeometricMe&tHarmonicMean (0.5
for marginal rates and¥2 for marginal counts). The
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renormalization of Accuracy after subtracting off theAlthough Kappa does attempt to renormalize a debiased
expected Accuracy as estimated by the dot product of thstimate of Accuracy, and is thus much more meaningful
Biases and Prevalences, and is expressible asthan Recall, Precision, Accuracy, and their biased
normalization of the discriminant of contingency,derivatives, it is intrinsically non-linear, doesattcount
deltap, by the mean error rate (viz. Kappa isfor error well, and retains an influence of bias, sotherte
deltap/[deltap +meanfp ,fn )]). All three measures does not seem that there is any situation when Kappa
are invariant in the sense that they are propertigheof would be preferable to Correlation as a standard
contingency tables that remain unchanged when we flip iedependent measure of agreement (Uebersax, 1987;
the Inverse problem (interchange positive and negative fBonett & Price, 2005). As we have seen, Bookmaker
both conditions and predictions). That is we observe: Informedness, Markedness and Correlation reflect the
discriminant of relative contingency normalized according
to different Evenness functions of the marginal Biases
Prevalences, and reflect probabilities relative he t
corresponding marginal cases. However, we have seen
The Dual problem (interchange antecedent and consequttat) Kappa scales the discriminant in a way that refthets
reverses which condition is the predictor and theipiedl actual error without taking into account expected error due
condition, and hence interchanges Precision and Recadl, chance, and in effect it is really just using the
Prevalence and Bias, as well as Markedness adtscriminant to scale the actual mean error: Kappa is
Informedness. For cross-evaluator agreement, batlp/[dp+mean{p,fn )] = 1/[1+meanip,fn )/dp] which
Informedness and Markedness are meaningful althougpproximates for small error flo- meanfp,fn  )/dp.

the polarity and orientation of the contingency isteaby.

Similarly when examining causal relationship2.7 Significance and | nfor mation Gain

(conventionally DeltaP vs DeltaP), itis useful valeate The ability to calculate various probabilities from a

both deductive and abductive directions in determining the .. ) L
L . contingency table says nothing about the significarice o
strength of association. For example, the connecti

o ?Hose numbers — is the effect real, or is it withie t
between cloud and rain involves cloud e®e causal

antecedent of rain (but sunshowers occur occasionall pected range of variation around the values expected by
ance? Usually this is explored by considering deviation

and rain asne causal consequent of cloud (but cloud)f . : s
. . ) rom the expected value&TP and its relatives) implied
days aren't always wet) — only once we have identified . :
. . ba% the marginal countR@, PP and relatives) — or from
full causal chain can we reduce to equivalence, and lack L :
; . o expected rates implied by the biases (Class Prevaledce an
equivalence may be a result of unidentified causep . : ; .
abel Bias). In the case of Machine Learning, Dataiivj,
alternate outcomes or both. e ) :
or other artificially derived models and rules, theréhis
Note that the effect of Prevalence on Accuracy, Recall further question of whether the training and
Precision has also been characterized above (82.3)parameterization of the model has set the 'correttiest’
terms of Flach's demonstration of how skew enters infrevalence and Bias (or Cost) levels. Furthernsbrevld
their characterization in ROC analysis, and effetyive this determination be undertaken by reference to thelmode
assigns different costs to (False) Positives ands€fra evaluation measures (Recall, Precision, Informedness,
Negatives. This can be controlled for by setting th®larkedness and their derivatives), or should the mazlel b
parametec appropriately to reflect the desired skew andet to maximize the significance of the results?

cost tradeoff, wittc=1 defining skew and cost insensitive N
. . There are several schools of thought about signifecanc
versions. However, only Informedness (or equwalen&s

Inverse Informedness = Informedness,
Inverse Markedness = Markedness,
Inverse Kappa = Kappa.

such as DeltaP' and skew-insensitive WRAcc) precise gggng' bUtBZIrI zl?refggg)thﬁ Uté“tgcoiffy?r?lciﬁl]zg;aﬁfgsc or
characterizes the probability with which a model inferm 9. ger, Y sP 9

the condition, and conversely only Markedness (ordB¥lt exact test T(X) and setting p = Prob(T(X)T(Data)). In

recisely characterizes the probability that a coowliti 0" ¢3¢ the Observed Data is summarized in a
b y P y contingency table and there are a number of tesishwh

marks (informs) the predictor. Similarly, only the S .
. - . : can be used to evaluate the significance of the contiggenc
Correlation (aka Coefficient of Proportionality aka . .
. L table. For example, Fisher's exact test calculdtes t
Coefficient of Determination aka Squared Matthews . :
roportion of contingency tables that are at least as

C&;Zﬁﬂfnthact%ﬂgﬁgg anp(;ecrlzg:Ztofir:]?;?r(rsznrwlzzaﬁile;h avorable to the Prediction/Marking hypothesis, rather
b y P han the Null hypotheis, and provides an accurate estima

. . t
other, under our dichotomous assumptions. Note th L ; ; :
Tetrachoric Correlation is another estimate of tharBon o the significance of the entire contingency tabléhait

: . any constraints on the values or distribution. The
Correlation made under the alternate assumption of A likelinood-based &test and Pearson's approximatin
underlying continuous variable (assumed normall Zg ; ; pproximating

o . : . . tests are compared against a Chi-Squared Distribution
distributed), and is appropriate if we instead assunte t & : .
ppropriate degree of freedom (1 for the binary

we are dichotomizing a normal continuous variable . g :
) . ; ! . contingency table given the marginal counts are knpwn
(Hutchison, 1993). But in this article we are making thg{nd dgpen)(/j on agsumptions al?out the distribution ar)ld
explicit assumption that we are dealing with a right/wrong/ icallv focus onlv on the Predicted Positives '
dichotomy that is intrinsically discontinuous. picaly y '
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2N-dtp/ Evennesg=2N g’ BiasG
2N rg? -BiasG
2N-M%*Evenness (34)

v? captures the Total Squared Deviation relative t@’xm
expectation, is usually calculated only in relation to
positive predictions, and is valid only for reasonaliggi
contigencies (one rule of thumb is that the smallesisel
at least 5, see e.g. Lowry, 2000):

The Geometric Mean of these two overall estimatethfor
full contingency table is
K'w= (TP-ETP) ?[ETP + (FP-EFP) ?/EFP 2N-dtp/ Evennesg=2N ‘rprg -PrevGBiasG
= DTP?ETP + DFP 2/EFP 2N'2g - Evenness
= 2DP2/EHP,EHP=2ETP -EFP/[ETP+EFP] = 2NB-‘M -Evennesg (35)
= 2N -dp?/ehp,ehp=2etp -efp/[etp+efp]

XZKBM

This is simply the total sum of squares variance adegun

= 2N -dp?/[rh -pp] = Nr%-PrevG/Bias for by the correlation coefficient BMG (22) over th

= NB%EvennesgBias data points discounted by the Global Evenness factor,
~ (N+PN) r%-PrevG@ (Bias— 1) being the squared Geometric Mean of all four Positivk an
= (N+PN) -B*Evennesg (30) Negative Bias and Prevalence terms (Evergiess

PrevGBiasG). The less even the Bias and Prevalence, the
G” captures Total Information Gain, being N times thenore data will be required to achieve significance, the
Average Information Gain in nats, otherwise known agaximum evenness value of 0.5 being achieved with both
Mutual Information, which however is normally expresse@ven bias and even prevalence. Note that for evendia

in bits. We will discuss this separately under the Génerprevalence, the corresponding positive and negative
Case. We deal with ‘Gor positive predictions in the casesignificance estimates match the global estimate.

of small effect, that igp close to zero, showing that @

twice as sensitive ag in this range. Note that this is comparable to full contingency table
estimation of p by the Fisher Exact Test (except for the
GZ+,,/2 =TP ‘In(TP/ETP) + FP  :In(FP/EFP) distributional assumption) and is independent of any
=TP :In( 1+DTP/ETP)+FP In( 1+DFP/EFP) alternate hypothesis. Based on a Bayesian equal

~ TP-(DTP/ETP) + FP -(DFP/EFP) probability prior for the null hypothesis gHand an

= 2N -dp?/ehp unspecific one-tailed alternate hypothesig, (&lg. that the

) 2 . current effect represents the correct estimate of acgyr
2N -dp?/th -pp] = Nr’-PrevG/Bias new posterior probability estimates for Type Io(H
N-B*EvennesgBias rejection,Alpha(p) ) and Type Il (H rejection, Beta(p))
(N+PN) r%-PrevG (Bias— 1) errors can be estimated from the posthoc likelihood
(N+PN) -B>Evennesg (31) estimation (Sellke, Bayari and Berger, 1999):

u

This result (31-32) shows thgttand@ significance of the  L(p) Alpha(p)/Beta(p)

Informedness effect increases wNlas expected, but also - e p log(p) (36)
with the square of Bookmaker, the Evenness of Prevalence

(Evennesg = Prev@ = Prev(1-Prev)) and the number of Alpha(p) = 1/[1+1/L(p)] (37)
Predicted Negatives (viz. with Inverse Bias)! Thias _

expected. The more Informed the contingency regardir'ia’geta(p) = V[L+L(p)] (38)
positives, the less data will be needed to reagg .

significance. The more Biased the contingency towards Simple Examples

positives, the less significant each positive is aediore Bookmaker Informedness has been defined as the
data is needed to ensure significance. The Bias-weightebbability of an informed decision, and we have shown
average over all Predictions (here K2 case: Positive identity with DeltaP' and WRAcc, and the close
and Negative) is simpliKNB*PrevG which gives us an relationship (10, 15) with ROC AUC. A system that makes
estimate of the significance without focussing on eithean informed (correct) decision for a target conditiathw

u

case in particular. probability B, and guesses the remainder of the tinie, w
) _ _ ) exhibit a Bookmaker Informedness (DeltaP') of B and a
Xke = 2N-dt2p/ Evennesg= 2N " -PrevG Recall of B:(1-Prev) + Bias. Conversely a proposed
= 2Nrp” ‘Evennesg marker which is marked (correctly) for a target condition
= 2NB*Evenness (32) with probability M, and according to chance the remainder

of the time, will exhibit a Markedness (DeltaP) ofavd a
recision of M-(1-Bias) + Prev. Precision and Recal ar
thus biased by Prevalence and Bias, and variation of
system parameters can make them rise or fall

Analogous formulae can be derived for the significance
the Markedness effect for positive real classesngdtiat
Evenness= BiasG.

x%r = 2N -dp?/[ph ‘rp]= Nrg*BiasG/Prev independently of Informedness and Markedness.
= NM?-EvennessPrev Accuracy is similarly dependent on Prevalence and Bias:
~ (N+RN) -M*BiasG (Bias— 1) 2-(B-(1-Prev)-Prev+Bias-Pret)( Bias+Prev),

— v 2,
= (N*RN) rg"Evenness and Kappa has an additional problem of non-linearity due

to its complex denominator:
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Table 2. Binary contingency tables. Colour codingisasin Table 1, showing example counts of correct (green) and incorrect
(pink) decisions and the resulting Bookmaker Infor medness (B=WRacc=DeltaB, Markedness (C=DeltaP) Matthews
Correlation (C), Recall (Rec) Precision (Prec) Rand Accuracy (Rac) Harmonic Mean of Recall and Precision (F), Geometric
Mean of Recall and Precision (G), Cohen Kappa (x),and y calculated using Bookmaker (yx’+p), Markedness (y %r) and
standard (x °) methods across the positive prediction or condition only, as well as calculated across the entire K=2 class
contingency using the newly proposed methods, all of which are designed to be referenced to alpha (a) according to the y >
distribution, and are morereliable due to taking into account all contingencies.. The single-tailed threshold is shown for a=0.05

B:(1-Prev)-Prev / (1Bias-Prev(Bias+Prev)/2). normalized contingency matrigt . However, this value

It is thus useful to illustrate how each of these othe'? stillinfluenced by both Bias and Prevalence.

measures can run counter to an improvement in overéll the case where two evaluators or systems are being
system performance as captured by Informedness. For ttoenpared with no a priori preference, the Correlation
examples in Table 2 (for N=100) all the other measaeg r gives the correct normalization by their respectives&sa
some quite considerably, but Bookmaker actually fallsind is to be preferred to Kappa.

Table 2 also illustrates the usage of the Bookmaker a
Markedness variants of th@ statistic versus the standard
formulation for the positive case, showing also the K
class contingency version (f&=2 in this case).

Pnd the case where an unimpeachable Gold Standard is
employed for evaluation of a system, the appropriate
normalization is for Prevalence or Evenness of #ad r
gold standard values, giving Informedness. Since this is
Note that under the distributional and approximativeonstant, optimizing Informedness and optimizihgare
assumptions foi? neither of these contingencies differequivalent.

sufficiently from chance at N=100 to be significanthe t More generallv. we can look not onlv at what proposed
0.05 level due to the low Informedness Markedness and. - 9 Y, y brop

Correlation, however doubling the performance of thsOIUtlon best solve_s a prob_lem, by comparing
: . T _ formedness, but which problem is most usefully solved
system would suffice to achieve significance at N=10

given the Evenness specified by the Prevalences an o proposed system. In a medical context, for example,

Biases). Moreover, even at the current perform i it’Is usual to come up with po_tentlally useful medlt_:atlons
. . or tests, and then explore their effectiveness aerogge
the Inverse (Negative) and Dual (Marking) Problems show . .
. ERR : . range of complaints. In this case Markedness may be
highery~ significance, approaching the 0.05 level in some . .
. L appropriate for the comparison of performance across
instances (and far exceeding it for the Inverse Dullle "
: : . . L different conditions.
KB variant gives a single conservative significanceslle
for the entire table, sensitive only to the diraatiof Recall and Informedness, as biased and unbiaseghtari
proposed implication, and is thus to be preferred ower tof the same measure, are appropriate for testing
standard versions that depend on choice of condition. effectiveness relative to a set of conditions, and th
Incidentally, the Fisher Exact Test shows significatace |mp_ortanc¢ of Recall is l_)elng mc_reasmgly recognized a
) aving an important role in matching human performance,
the 0.05 level for both the examples in Table . ; . .
corresponding to an assumption of a hypergeometr'or example in Word Alignment for Machine Translation
(ﬁraser and Marcu, 2007). Precision and Markedness, as

distribution rather than normality - viz. all assignnseot | . : ;
. biased and unbiased variants of the same measure, are
events to the cells of the contingency tables aumasd to : . . .
. . . ppropriate for testing effectiveness relative to taose
be equally likely irrespective of the true means angPpProp L . .
S predictions. This is particularly appropriate where dee
standard deviations. : L
not have an appropriate gold standard giving correct labels
for every case, and is the primary measure used in
Information Retrieval for this reason, as we canmuivk
If we have a fixed size dataset, then it is arguablygefit  the full set of relevant documents for a query and thus
to maximize the determinant of the unnormalizedannot calculate Recall.
contingency matrixDT. However this is not comparable : . .
; : owever, in this latter case of an incompletely
across datasets of different sizes, and we thus need o : o
. ; . characterized test set, we do not have a fully spdcifie
normalize forN, and hence consider the determinant of the " . :
contingency matrix and cannot apply any of the other
measures we have introduced. Rather, whether for

4  Practical Considerations
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Information Retrieval or Medical Trials, it is assumibdt required due to the canonical nature of one of the Scale
a test set is developed in which all real labels digbtg the corresponding Regression Coefficients are availabl
(but not necessarily perfectly) assigned. Note thabime

domains, labels are assigned reflecting differentdest briefly the generalization to the multi-class case e

assurance, but this has lead to further confusion inaelat . .
will assume that both real classes and predicted classes

to possible measures and the effectiveness of thgte orized withK labels, and again we will assume that
techniques evaluated (Fraser and Marcu, 2007). ffeg ' 9

Information Retrieval, the labelling of a subsete@ewant €ach class is non-empty unless explicitly allowed (this is

L ; because Precision is ill-defined where there are no
documents selected by an initial collection of systeams c

. ; ;r)]redictions of a label, and Recall is ill-defined whityrere
lead to relevant documents being labelled as irrelevant
are no members of a class).

because they were missed by the first generation system
so for example systems are actually penalized fétowers (2003) derives Bookmaker Informedness (41)
improvements that lead to discovery of relevandnalogouslyto Mutual Information & Conditional Entropy
documents that do not contain all specified query word&9-40) as a pointwise average across the contingency
Thus here too, it is important to develop test setsdhat cells, expressed in terms of label probabilitied)Pwhere
appropriate size, fully labelled, and appropriate fae thPe(l) is the probability of Predictionl, and
correct application of both Informedness and Markednedapel-conditioned class probabilitieg(Ell) , where R(c|l)

as unbiased versions of Recall and Precision. is the probability that the Prediction labeled actually of

This Information Retrieval paradigm indeed provides geal classc, and in particularPe(l|l)= Precision), and

good example for the understanding of the Informedne\ét@ere the delta functions are mathematical shorthfands

oolean expressions interpreted algorithmically as in C,
and Markedness measures. Not only can documen b P 9 y

retrieved be assessed in terms of prediction of reixeyanWﬁh tru_e EXpressions _takTg the value 1 and false
xpressions 0, so thég = (c =1) represents the standard

labels for a query using Informedness, but queries can %lrac delta function andy = (¢ 1) its complement
assessed in terms of their appropriateness for theedesi . '
documents using Markedness, and the different kinds BA(R|[P) =) Pu(l) > c Pr(cll) [<log(Px(cl))/P(c)] (39)
search tasks can be evaluated with the combination of _

two measures. The standard Information Retrieval mantr '(:“'R|P) =21 Pell) 2c Pa(cll) [Hog(Fe(cl)] (40)

that we do not need to firadl relevant documents (so thatB(R|P) =) Pa(l) D¢ Pr(cll) [Pe(1)/(Pr(l) —04)] (41)

Recall or Informedness is not so relevant) applle_ly_ O e now define a binary dichotomy for each labaith |
where there are huge numbers of documents containing the : L
d the correspondinmas the Positive cases (and all other

required information and a small number can be eXpeCtFELels/classes grouped as the Negative case). We now

al
to provide that information with confidence. Howeverdaenote its prevalence Prév(and its dichotomous
another kind of Document Retrieval task involves s
specific and rather small set of documents for which W%ookmaker Informedness B(and thus can simplify (41)
need to be confident that all or most of them have bee
found (and so Recall or Informedness are especiaB(R|P) =) Prev() B(l) (42)
relevant). This is quite typical of literature review a Analogously we define dichotomous Bigs( and
specialized area, and may be complicated by neﬁ%arkednessi) and derive

developments being presented in quite different forms by
researchers who are coming at it from different dioas, M(P|R) =) Bias€) M(c) (43)

if not different disciplinary backgrounds. A good eXampl%’hese formulations remain consistent with the definitio

of this is the decade it has taken 10 find the Iiteratiné of Informedness as the probability of an informed denisi

discusses the concept variously known as Edge : .
Informedness, Regression, DeltaP’ and ROC AUC - aIR?rsus chance, and Markedness as its dual. The Geometric

perhaps this wheel has been invented in yet other contex gan of multi-class Informedness and Markedness would

appear to give us a new definition of Correlation, whose
as well. . ) -

square provides a well defined Coefficient of

Determination. Recall that the dichotomous forms of
> TheGeneral Case Markedness (20) and Informedness (21) have the
So far we have examined only the binary case wittheterminant of the contingency matrix as common
dichotomous Positive versus Negative classes and labelsumerators, and have denominators that relate onheto t

margins, to Prevalence and Bias respectively. Cadioala

It is beyond the scope of this article to consider thﬁlarkedness and Informedness are thus equal when
continuous or multi-valued cases, although the Matthe%srevalence — Bias. The dichotomous Correlation

Correlation is a discretization of the Pearson Catiet -
o . . Coefficient would thus appear to have three factors, a
with its continuous-valued assumption, and the Spearman
. ) ; common factor across Markedness and Informedness,
Rank Correlation is an alternate form applicable tg

arbitrary discrete value (Likert) scales, and Tetreicho representing their conditional dependence, and factors

L . . . representing Evenness of Bias (cancelled in Markediness
Correlation is available to estimate the correlatbran P 9 ( J

. . : and Evenness of Prevalence (cancelled in Informedness),
underlying continuous scale. If continuous measures . L

. €ach representing a marginal independence.
corresponding to Informedness and Markedness are

It is however, useful in concluding this article to sioler
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In fact, Bookmaker Informedness can be driven arbiyrarilAt this stage we still have to define the multi-class
close to 0 whilst Markedness is driven arbitraritysel to 1, extension of the Evenness terms, but considering the way
demonstrating their independence - in this case Recall afl) is substituted into (30) in the formulation of the
Precision will be driven to or close to 1. The adiity Informedness significance statistics, it seems ¢hest the
close hedge relates to our assumption that all predicted ddarmonic mean should be used. Since due to the marginal
real classes are non-empty, although appropriatéslimconstraints on Prevalence and Inverse Prevalenoefed
could be defined to deal with the divide by zero problema relation to (26) and (27), the square of their Geometric
associated with these extreme cases. TechnicalMean is simply halfthe Harmonic Mean. Thus Evengess
Informedness and Markedness are conditionali simply half the Harmonic Mean of all the Prevaksc
independent - once the determinant numerator is fixealnd Inverse Prevalences, Evengdsssimilarly half the
their values depend only on their respective marginélarmonic Mean of all the Biases and Inverse Biasass, b
denominators which can vary independently. To the exteBtrennesg is still defined as the Geometric Mean of.
that they are independent, the Coefficient oEvennesgand Evennegs

Determination acts as the joint probability of mutual

determination, but to the extent that they are dependeit, Exploratory Work and Future Work

the qurelation Coefficien_t it_self acts as the J-Oiml'he Bookmaker Informedness measure has been used
probability of mutual determination. extensively by the Al Group at Flinders over the last 5
These conditions carry over to the definition of Catieh years, in particular in the PhD Theses and other
in the multi-class case as the Geometric Mean g@iublications of Trent Lewis (2003ab) relating to
Markedness and Informedness - once all numerators @wedioVisual Speech Recognition, and the publications of
fixed, the denominators demonstrate margingbean Fitzgibbon (2007ab) relating to EEG/Brain
independence. Computer Interface. Sean was also the original author o
p g
the Matlab scripts that are available for calculatiogh
the standard and Bookmaker statistics (see footnote on
and a function of ratios. and would normallv be summ first page). The connection with DeltaP was discovered by
over cells of K-1} a k—class contingenc ytable with ichard Leibbrandt in the course of his PhD research in
5 gency tab %yntactic and Semantic Language Learning. We have also
(K=1) degrees of freedom to produce a st_at!stlc for thr ferred extensively to the equivalence of Bookmaker
table as a whole. However, these statistics are Nt rmedness to ROC AUC. as used standardly in

mdepender_]t of which variables are sel_ected for evamat'ﬂ/ledicine, although AUC has the form of an undemeaned
or summation, and the p-values obtained are thus quite

misleading, and for highly skewed distributions (in termBrObab'“ty’ and B is a demeaned renormalized form.

of Bias or Prevalence) can be outlandishly incorreatelf The Informedness measure has thus proven its worth
sum log-likelihood (31) over ak? cells we geNMI(R|P) across a wide range of disciplines, at least in its
which is invariant over Inverses and Duals. The anai®godichotomous form. A particular feature of the Lewis and
Prevalence-weighted multi-class statistic derived frioen t Fitzgibbon studies, is that they covered different nusibe
Bookmaker Informedness form of the Significancef classes (exercising the multi-class form of Bookmaker),
statistic, and the Bias-weighted statistic derived fthen as well as a number of different noise and artefact
Markedness form, extend Eqns 32, 34 & 35 to the K>@nditions. Both of these aspects of their work méwatt t
case by appropriate summation acros&atiells: the traditional measures and derivatives of Recall,
Precision and Accuracy were useless for comparing the
different runs and the different conditions, whilst
Y’um = KN -M%Evenness = KNrg>Evenness  (40) Bookmaker gave clear unambiguous, easily interpretable
results which were contrasted with the traditional
measures in these studies.

In relation to Significance, the single clags® and Gp?
definitions both can be formulated in terms of cell ¢eun

’we = KN -B*Evennesg = KNrp>Evenness  (39)

’kme= KN -B-M-Evenness = KNrprgEvenness (41)

A further problem with the standard approach applidd to
-class contingency tables is the-()? degrees of freedom

which assumes independence of the counts it of the and whilst they work well there and demonstrate a clear

cells. This is appropriate for the null hypothesis dmal t 2 o

: : advantage ovey” traditional approaches, there has been
calculation ofalpha , but is patently not the case when the . : .

o . no systematic Monte Carlo analysis, and no major lobdy
cells are generated bi{ condition variables and K : .
. . . . . work comparing new and conventional approaches to

prediction variables that mirror them. Thus some kihd 0. .. N

N . . significance. Just as Bookmaker (or DeltaP') is the
correction is in order for the calculation lwéta . Whilst

. : ) . . normative measure of accuracy for a system agaf@etd
many corrections are possible, in this case congdtie

degrees of freedom directly seems appropriate and whiféttandard’ SO s the proposeq” significance statistic

h ; . or this most common situation. For the cross-rater o
using r = K-1) degrees of freedom is appropriate for . ; . .
: . Cross-system comparison, where neither is normatiee,
alpha , using r &K-1 degrees of freedom is suggested fi

0, . : .
beta under the conditions where significance is worthélvIG Corr_elat|on Is the approprl_ate meastlire, and
. . L S correspondingly we propose thékem is the appropriate
testing, given the association (mirroring) between thg .“~U° L .
X . ¥~ significance statistic. To explore these thoroughlg i
variables is almost complete.

matter for future research.

The newy’ke: Xkm andy’kem correlation statistics have
only been investigated to date in toy contrived situatio

to ROC, Informedness, Markedness & Correlation 12 Powers



Thus whilst our understanding of Bookmaker and Translation, Computational Linguistics
Markedness as performance measure is now quite mature33(3):293-303.

particularly in view of the clear relationships with gitig " .
measures exposed in this article, a better understanidingFgFZETéaEz;?]?nzn'Te_sl_o\f‘lafs;e; Aéefggfhugz(j%(gé;%z Qf

the S|gn|f|ca_nce_ measures remains a matter for_furthe Covering AlgorithmsM achine L ear ning 58(1):39-77.
work, including in particular, research into the multi-class

application of the technique, and exploration of thélutchinson TP. (1993). Focus on Psychometrics. Kappa
asymmetry in degrees of freedom appropriatalpha muddles together two sources of disagreement:
andbeta , which does not seem to have been exploredtetrachoric correlation is preferableResearch in
hitherto. Nonetheless, based on pilot experiments, theséNursing & Health 16(4):313-6, 1993 Aug.

statistics seem far more reliable and well-founded than tLafferty, J., McCallum, A. & Pereira, F. (2001).

. > .
traditional” and G statistics. Conditional Random Fields: Probabilistic Models for
Segmenting and Labeling Sequence Data. Proceedings
of the 18th International Conference on Machine
This work has benefited from invaluable discussions with Learning (CML-2001), San Francisco, CAViorgan

a great many members of the Flinders AlLab, as a®ll Kaufmann, pp. 282-289.

diverse others elsewhere at F"”defs' and aF Co.nmenfavrac, N., Flach, P., & Zupan, B. (1999). Rule evaluation
and summer schools. | would particularly highlight the measures: A unifying view. Proceedings of tHE 9

valuable contributions made by Sean Fitzgibbon, in . . .
. . -~ . International Workshop on Inductive  Logic

writing the Matlab scripts and finding the determinant . .

. L . . Programming ILP-99). Springer-Verlag, pp.
connection, by Trent Lewis in the first comprehensive

: . . 174-185.
comparative studies performed with Bookmaker and
conventional measures, and Richard Leibbrandt farewis, T. W. and D. M. WPower s (2003). Audio-Visual
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drawing to my attention the connection with DeltaP. Speech Recognition using Red Exclusion and Neural
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