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(ROC) analysis has been borrowed from Signal Psircgs
Abstract to become a standard for evaluation and standaidgse
Commonly used evaluation measures including Recafomparing True Positive Rate and False Positive.Riat
Precision, F-Factor and Rand Accuracy are biaset dhe Behavioural Sciences, Specmcllty and Sengtivdre
should not be used without clear understandinghef tcommonly used. Alternate techniques, such as Rand
biases, and corresponding identification of chamdease Accuracy and Cohen Kappa, have some advantages but
case levels of the statistic. Using these measusstem are nonetheless still biased measures. We wilpiedate
that performs worse in the objective sense of mfainess, Some of the literature relating to the problemsiitese
can appear to perform better under any of thesermorly Measures, as well as con;lderlng a number of oyher
used measures. We discuss several concepts andremadechniques that have been introduced and argudtnwit
that reflect the probability that prediction is dnined €ach of these fields, aiming/claiming to address th
versus chance. Informedness and introduce MarkedresProblems with these simplistic measures.
a dual measure for the probability that predictsomarked This paper recapitulates and re-examines the oakdtips
versus chance. Finally we demonstrate elegant ¢tions  petween these various measures, develops new tmsigh
between the concepts of Informedness, Markednegio the problem of measuring the effectivenessanf
Correlation and Significance as well as their itei empirical decision system or a scientific experiten
relatioqships with Reca}ll and Precision, and oatlthe analyzing and introducing new probabilistc and
extension from the dichotomous case to the genefgformation theoretic measures that overcome the
multi-class case. problems with Recall, Precision and their derivegiv
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Table 1. Systematic and traditional notations in dinary contingency table.Colour coding indicates correct
(green) and incorrect (pink) rates or counts in the contingency table.

one of our formal systematic names. True and Falseatter which subset we find, that we can't knowtlaing
Positives TP/FP) refer to the number of Predictedabout the relevance of documents that aren't redjrn

Positives that were correct/incorrect, and simjlaidr

Recall tends to be neglected or averaged away thie

True and False Negative§N/FN), and these four cells Learning and Computational Linguistics (where theut

sum toN. On the other hantgh, fp,fn,tn andrp,

is on how confident we can be in the rule or cfas3i

m and pp, pn refer to the joint and marginal However, in a Computational Linguistics/Machine

probabilities, and the four contingency cells ahel two

Translation context Recall has been shown to hawejar

pairs of marginal probabilities each sum to 1. Wi# w weight in predicting the success of Word Alignment
attach other popular names to some of these pidlesbi (Fraser & Marcu, 2007). In a Medical context Redsll

in due course.

We thus make the specific assumptions that we
predicting and assessing a single condition thaitieer

positive or negative (dichotomous), that we have o

predicting model, and one gold standard labelingets
otherwise noted we will also for simplicity assuthat the
contingency is non-trivial in the sense that bodsitve
and negative states of both predicted and realitons!
occur, so that none of the marginal sums or prdibabiis
zero.

n

moreover regarded as primary, as the aim is tctifgeall
Real Positive cases, and it is also one of thedegshich

oc analysis stands. In this context it is refereds

True Positive Ratetfgr ). Recall is defined, with its

various common appellations, by equation (1):
Recall = Sensitivity= tpr = tp/rp
= TP /RP= A /(A+C) 1)

Conversely, Precision or Confidence (as it is dalteData
Mining) denotes the proportion of Predicted Posittases
that are correctly Real Positives. This is what Mae

We illustrate in Table 1 the general form of a bjna Learning, Data Mining and Information Retrievaldson,
contingency table using both the traditional alghab but it is totally ignored in ROC analysis. It caowever
notation and the directly interpretable systemapioroach. analogously be called True Positive Accurac¢pal(),

Both definitions and derivations in this paper arade
relative to these labellings, although English terfe.g.
from Information Retrieval) will also be introducddr

various ratios and probabilities. The green positiv,

diagonal represents correct predictions, and thek
negative diagonal incorrect predictions. The prtémtis of
the contingency table may be the predictions dfeay,

being a measure of accuracy of Predicted Positives
contrast with the rate of discovery of Real Posiiv
(tpr ). Precision is defined in (2):
Precision = Confidencetpa = tp/pp

= TP /PP= A/(A+B) )

These two measures and their combinations focysaml

Cohen Kappa, Chi-Squared Significance, Log-Likeditho
Significance, Matthews Correlation, Pearson Cotiteia
Evenness, Bookmaker Informedness and Markedness

1 Introduction

A common but poorly motivated way of evaluatinguies

2 The Binary Case

It is common to introduce the various measureshi t
context of a dichotomous binary classification ea
where the labels are by convention + and - and the
predictions of a classifier are summarized in a feeil
contingency table. This contingency table may be

of Machine Learning experiments is using RecalfXpressed using raw counts of the number of tiraeb e
Precision and F-factor. These measures are napved Rredicted label is associated with each real ciassiay be

their origin in Information Retrieval and presepesific
biases, namely that they ignore performance inectsr
handling negative examples, they propagate

underlying marginal Prevalences and biases, aryfdile

expressed in relative terms. Cell and margin &ively be
formal probability expressions, may derive cell

trfxpressions from margin labels or vice-versa, msg u

alphabetic constant labedsb, c,d orA,B,C,D

to take account the chance level performance. &n tR' May use acronyms for the generic terms for e
Medical Sciences, Receiver Operating Charactesisti('salsev Real and Predicted Positives and Negati@#en

This is an extension of papers presented at thg R@€rnational

Cognitive Science Conference and the 2007 Human

Communication Science SummerFest. Both papersg algt
scripts/spreadsheets to calculate many of thesstatidiscussed,

may be found altittp://david.wardpowers.info/BM/index.htm
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PPER CASE is used where the values are counts, and
lower case letters where the values are probasiliar
proportions relative t& or the marginal probabilities — we
will adopt this convention throughout this papewgys
written intypewriterfont ), and in addition will use
Mixed Case (in the normal text font) for popular
nomenclature that may or may not correspond dyr¢otl

Evaluation: From Precision, Recall and F-Factor

of some computational rule or system (e.g. an HExpehe positive examples and predictions, althougkvéeet
System or a Neural Network), or may simply be &ctir them they capture some information about the rares
measurement, a calculated metric, or a latent tondi kinds of errors made. However, neither of themwas
symptom or marker. We will refer generically thét any information about how well the model handles
model" as the source of the predicted labels, ahd " negative cases. Recall relates only to#Recolumn and
population” or “the world" as the source of thelreaPrecision only to th&P row. Neither of these takes into
conditions. We are interested in understanding katw account the number of True Negatives. This algiep
extent the model “informs" predictions about theo their Arithmetic, Geometric and Harmonic MeahsG
world/population, and the world/population “marks‘and F=G2/A (the F-factor or F-measure). Note that t
conditions in the model. F-measure effectively references the True Positivéke
Arithmetic Mean of Predicted Positives and RealtRes,
2.1 Recall & Precision, Sensitivity & Specificity being a constructed rate normalized to an idealzdde.
The Geometric Mean of Recall and Precision (G-nrejsu

- L ffectively normalizes TP to the Geometric Mean of
proportion of Real Positive cases that are cowyectl ) L e ) :
- - N redicted Positives and Real Positives, and itsrindtion
Predicted Positive. This measures the Coveragehef t

Real Positive cases by td® (Predicted Positive) rule. Its content ‘corresponds o the Arithmetic Mean of the
. ) . Information represented by Recall and Precision.

desirable feature is that it reflects how manyhefrelevant

cases therP rule picks up. It tends not to be very highlyln fact, there is in principle nothing special abdhe

valued in Information Retrieval (on the assumptitmst  Positive case, and we can define Inverse statistiesms

there are many relevant documents, that it doesally of the Inverse problem in which we interchange i

Recall or Sensitivity (as it is called in Psychaolpds the

to ROC, Informedness, Markedness & Correlation 2 Powers



and negative and are predicting the opposite ciaserse

under the control of the experimenter, who can ghahe

Recall or Specificity is thus the proportion of Reamodel by changing the theory or algorithm, or some

Negative cases that are correctly Predicted Neg8y,

parameter or threshold, to better fit the world/{pagon

and is also known as the True Negative Ratileeing modeled. Note that F-factor effectively refeees

(tnr ). Conversely, Inverse Precision is the proportibn
Predicted Negative cases that are indeed Real Negat
(4), and can also be called True Negative Accuey ):

Inverse Recall =tnr =tn/m

=TN/RN = D/(B+D) ©)
Inverse Precision =tna =tn/pn

=TN/PN = D/(C+D) (4)

Rand Accuracy explicity takes into account th
classification of negatives, and is expressibleb(@h as a
weighted average of Precision and Inverse Preciimh

tp (probability or proportion of True Positives) thet
Arithmetic Mean of Bias and Prevalence. A commda r
of thumb, or even a characteristic of some algorithis to
parameterize a model so that Prevalerc®ias, viz.
rp=pp . Corollaries of this setting are RecalPrecision
(=A=G=F) , Inverse Recall = Inverse Precision and
Fallout = Miss Rate.

Alternate characterizations of Prevalence are rimgeof
dds (Powers, 2003) or Skew (Flach, 2003), being the

Class Ratiocs =rn/frp , recalling that by definition
+rn=1  andRN+RP=N. If the distribution is highly

) 1]
as a weighted average of Recall and Inverse Recasﬁ&ewed,typically there are many more negativesc

Conversely, the Jaccard or Tanimoto similarity fioieint
explicitly ignores the correct classification ofgagives
(TN):

Accuracy = tea=ter = tp+tn

= rp*tpr+rn*tnr

= pp*tpa+pn*tna = (A+D)/N 5)
Jaccard 4p/(tp+fn+fp) = TP/(N-TN)

= A/(A+B+C) = A/(N-D) (6)

Each of the above also has a complementary formicigf

positive, this means the number of errors due tor po
Inverse Recall will be much greater than the nundfer
errors due to poor Recall. Given the cost of bodlsé
Positives and False Negatives is equal, indivigualie
overall component of the total cost due to FalssitRes
(as Negatives) will be much greater at any sigaiftdevel
of chance performance, due to the higher Prevalefice
Real Negatives.

Note that the normalized binary contingency tabléh w

an error rate, of which some have specific names annspecified margins has three degrees of freedsetting

importance: Fallout or False Positive Rdfer () are the

any three non-Redundant ratios determines the rest

proportion of Real Negatives that occur as Predictgsetting any count supplies the remaining infororatio

Positive (ring-ins); Miss Rate or False NegativéeRiar )
are the proportion of Real Positives that are Rtedi
Negatives (false-drops). False Positive Rate isséwend
of the legs on which ROC analysis is based.

Fallout =fpr =fp/rp

=FP/RP = B/(B+D) )
Miss Rate = fnr =fn/rn

=FN/RN =C/(A+C) (8)

Note that FN and FP are sometimes referred to pe Ty
and Type Il Errors, and the ratiess andfp as alpha and
beta, respectively — referring to falsely rejectiog
accepting a hypothesis. More correctly, thesegapply
specifically to the meta-level problem discusseérlaf
whether the precise pattern of counts (not rateshe

recover the original table of counts with its falegrees of
freedom). In particular, Recall, Inverse Recall and
Prevalence, or equivalently tpr, fpr amd, suffice to
determine all ratios and measures derivable from th
normalized contingency table, bhit is also required to
determine significance. As another case of speiciferest,
Precision, Inverse Precision and Bias, in comhimati
suffice to determine all ratios or measures, aliiowe
will show later that an alternate characterizatioh
Prevalence and Bias in terms of Evenness allows\vien
simpler relationships to be exposed.

We can also take into account a differential véaioe

positives ¢p) and negativesch) — this can be applied to

errors as a cost (loss or debit) and/or to cocases as a
ain (profit or credit), and can be combined intsiregle

contingency table fit the null hypothesis of randon%Ost Ratioc, = cnicp . Note that the value and skew

distribution rather than reflecting the effect afne
alternative hypothesis (which is not in general dre
represented by eithétP-> +R or=P-> =R or both).

2.2 Prevalence, Bias, Cost & Skew

We now turn our attention to various forms of biaat
detract from the utility of all of the above surtameasures

determined costs have similar effects, and may be
multiplied to produce a single skew-like cost facto
c=c Cs. Formulations of measures that are expressed
using tpr, fpr ands may be made cost-sensitive by using
c=c Cs in place ofc = ¢ 5, or can be made
skew/cost-insensitive by usimg= 1  (Flach, 2003).

(Reeker, 2000). We will first note thgt represents the 2.3 ROC and PN Analyses

Prevalence of positive cas&R/N, and is assumed to be
property of the population of interest — it maydomstant,
or it may vary across subpopulations, but is regguttere
as not being under the control of the experimenty.

contrast,pp represents the (label) Bias of the mod

(Lafferty, McCallum and Pereira, 2002), the tengeat
the model to output positive labeRP/N, and is directly

Powers

aFIach (2003) has highlighted the utility of ROC lyeis to

the Machine Learning community, and characterited t
skew sensitivity of many measures in that context,
aytilizing the ROC format to give geometric insiglirtgo

the nature of the measures and their sensitivitgkiw.
Firnkranz & Flach (2005) have further elaborated th
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Figure 1. lllustration of ROC Analysis. The main
diagonal represents chance with paralle isocost lines
representing equal cost-per formance. Points above the
diagonal represent performance better than chance,
those below wor se than chance. For a single good
(green) system, AUC isthe area under the curve
(trapezoid between green line and [0,1] on the x-axis).
The perverse (red) system shown is the same (good)
system applied to a problem with class labels reversed.
The other perverse systemwith predictions rather than
labels reversed (not shown) forms a parallelogram

analysis, extending it to the unnormalized PN vuriaf
ROC, and targeting their analysis specifically tder

learning. We will not examine the advantages of RO

analysis here, but will briefly explain the priniip and
recapitulate some of the results.

ROC analysis plots the ratpr against the ratépr ,
whilst PN plots the unnormalize@iP againstFP. This
difference in normalization only changes the scaled
gradients, and we will deal only with the normadiZerm
of ROC analysis. A perfect classifier will scoretlire top
left hand corner fpr=0,tpr=100% ). A worst case
classifier will score in the bottom right hand cern
(fpr=100%,tpr=0 ). A random classifier would be
expected to score somewhere along the positiveodiég

(tpr=fpr ) since the model will throw up positive andAccuracy

sequence of segments from (0,0) to (1,1). A paeic
cost model and/or accuracy measure defines ansisoco
gradient, which for a skew and cost insensitive ehadll
bec=1, and hence another common approach is to choose
a tangent point on the highest isocost line thathes the
curve. The simple condition of choosing the paointthe
curve nearest the optimum point (0,1) is not comignon
used, but this distance to (0,1) is givenpf for) 2+
(1tpr) 2], and minimizing this amounts to minimizing
the sum of squared normalized erfipr, 2+fnr 2.

A ROC curve with concavities can also be locally
interpolated to produce a smoothed model followtimeg
convex hull of the original ROC curve. Itis eyewssible

to locally invert across the convex hull to repair
concavities, but this may overfit and thus not gelize to
unseen data. Such repairs can lead to selecting an
improved model, and the ROC curve can also be tessed
return a model to changing Prevalence and cosesaiiéa
under such a multipoint curve is thus of some valtue
the optimum in practice is the area under the smpl
trapezoid defined by the model:

AUC = (tpr-fpr+1)/2
= (tpr+tnr)/2
=1 - (fpr+fnn)/2 9)

For the cost and skew insensitive case, withl,
maximizing AUC is thus equivalent to maximizing
tpr-fpr or minimizing a sum of (absolute) normalized
error fpr+fnr The chance line corresponds to
tpr-fpr =0, and parallel isocost lines forl have the

rm tpr-for  =k. The highest isocost line also

aximizes tpr-fpr and AUC so that these two
approaches are equivalent. Minimizing a sum ofeeph
normalized error, fpr 2+fnr 2 corresponds to a
Euclidean distance minimization heuristic that is
equivalent only under appropriate constraints, e.g.
fpr=fnr | or equivalently, Bias=Prevalence, noting that
all cells are non-negative by construction.

We now summarize relationships between the various
candidate accuracy measures as rewritten in tefrps,o

fpr and the skewg (Flach,2003), as well in terms of
Recall, Bias and Prevalence:

= [tpr+c-(1-fpr)}/[1+c]

negative examples at the same rate (relative t& the = 2-Recall-Prevl- Bias-Prev (10)

populations — these are Recall-like scafips= Recall,
1-fpr = Inverse Recall). For the negative diagon
(tpr+c*fpr=1

Precision = tpr/[tpr+c-fpr]
al = Recall-Prev/Bias (11)

) corresponds to matching Bias toF-Measure = 2tpr/[tpr+c-fpr+l]

Prevalence for a skew of = 2-Recall-Prev/[Bias+Prev] (12)
- WRacc = 4c-[tpr-fpr]/[1+c]2
The ROC plot allows us to compare classifiers (ngde = 4] Recalt Bias]-Prev 13)

and/or parameterizations) and choose the one that i

closest to (0,1) and furtherest frampr=fpr  in some

The last measure, Weighted Relative Accuracy, was

sense. These conditions for choosing the optimdefined by Lavrac, Flach & Zupan (1999) to subteftt

parameterization or model are not identical, arfdan the
most common condition is to minimize the area urider
curve (AUC), which for a single parameterization aof

model is defined by a single point and the segments tpr-fpr=

connecting it to (0,0) and (1,1). For a paramegsfi
model it will be a monotonic function consisting af

to ROC, Informedness, Markedness & Correlation

the component of the True Positive score that is
attributable to chance and rescale to the rangeMtite
that maximizing WRacc is equivalent to maximizing@
2-AUC-1, ag is constant. Thus WRAcc
is an unbiased accuracy measure, and the skewsitigen
form of WRAcc, withc=1, is preciselytpr-fpr . Each
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of the other measures (10-12) shows a bias inittican

without the occurrence of a specific outcome coolit

not be maximized independent of skew, althougteliably triggering the predictor.

skew-insensitive versions can be defined by settirly.

The recasting of Accuracy, Precision and F-Measure

terms of Recall makes clear how all of these varly i
terms of the way they are affected by PrevalendeBias.

Prevalence is regarded as a constant of the togdition
or data set (andc = [1- Prey/ Prev), whilst

For the binary case we have

Informedness = Recall + Inverse Reeal

= tpr-fpr = 1-fnr-fpr (14)
Markedness = Precision + Inverse Precisidh
= tpa-fna = 1-fpa-fna (15)

parameterizing or selecting a model can be viewed We noted above that maximizing AUC or the unbiased
terms of trading offpr andfpr as in ROC analysis, or WRAcc measure effectively maximized tpr-fpr andeiad

equivalently as controlling the relative numbempositive

WRAcc reduced to this in the skew independent

and negative predictions, namely the Bias, in orber case. This is not surprising given both Powerskadh

maximize a particular accuracy measure (Recaltision,

set out to produce an unbiased measure, and tbar lin

F-Measure, Rand Accuracy and AUC). Note that for definition of Informedness will define a unique dar

given Recall level, the other measures (10-13)atease
with increasing Bias towards positive predictions.

2.4 DeltaP, Informedness and Markedness

Powers (2003) also derived an unbiased accuracgurea

to avoid the bias of Recall, Precision and Accurdwy to

population Prevalence and label bias. The Bookmake

form. Note that while Informedness is a deep measti
how consistently the Predictor predicts the Outcdime
combining surface measures about what proportion of
Outcomes are correctly predicted, Markedness isep d
measure of how consistently the Outcome has the
Predictor as a Marker by combining surface measures
apout what proportion of Predictions are correct.

algorithm costs wins and losses in the same wagira fiIn the Psychology literature, Markedness is known a
bookmaker would set prices based on the odds. RBow®eltaP and is empirically a good predictor of human

then defines the concept of Informedness whichesspits
the 'edge’ a punter has in making his bet, as es@#tband
quantified by his winnings. Fair pricing basedamnrect
odds should be zero sum — that is, guessing \a¥deyou
with nothing in the long run, whilst a punter witbrtain

associative judgements — that is it seems we develo
associative relationships between a predictor and a
outcome when DeltaP is high, and this is true evieen
multiple predictors are in competition (Shanks,
1995). Perruchet and Peereman (2004), in the xtoote

knowledge will win every time. Informedness is theexperiments on information use in syllable processi

probability that a punter is making an informed &ed is
explained in terms of the proportion of the time #uge

note that Schanks sees DeltaP as "the normativeurea
of contingency", but propose a complementary, bacéy

works out versus ends up being pure guesswork.eBowadditional measure of strength of association,dP¢laka

defined Bookmaker Informedness for the gendéaabel,

case, but we will defer discussion of the genesakdor
now and present a simplified formulation of Infoness,
as well as the complementary concept of Markedness.

Definition 1

Informedness quantifies how informed a predictor is
for the specified condition, and specifies the
probability that a prediction is informed in relation to
the condition (versus chance).

Definition 2

Markedness quantifies how marked a condition is for
the specified predictor, and specifies the probability
that a condition is marked by the predictor (versus
chance).

These definitions are aligned with the psychololgarad
linguistic uses of the terms condition and markine

condition represents the experimental outcome vee afgrg,s

Informedness. Perruchet and Peeremant also nete th
analog of DeltaP to regression coefficient, and tha
Geometric Mean of the two measures is a dichotomous
form of the Pearson correlation coefficient, thettkaws'
Correlation Coefficient, which is appropriate uslea
continuous scale is being measured dicotomousthich
case a Tetrachoric Correlation estimate would be
appropriate, as discussed by Bonnet and Price 2005

2.5 Causality, Correlation and Regression

In a linear regression of two variables, we seeframlict
one variabley, as a linear combination of the other, x,
finding a line of best fit in the sense of mininmigithe sum
of squared error (in y). The equation of fit has tbrm

Y=Y o+l xX where

ry = 2xy- 2x Yylin Yx%3x 3x] (16)
Substituting in counts from the contingency talide,the
regression of predictingR (1) versus-R (0) given+P (1)
-P (0), we obtain this gradient of best fit

trying to determine by indirect means. A marker %fminimizing the error in the real valu:

predictor (cf. biomarker or neuromarker) represehts
indicator we are using to determine the outcomieerd is
no implication of causality — that is something wl

address later. However there are two possibletibirecof

rp JAD —BC]/[(A+B)(C+D)]
=A/(A+B) — C/(C+D)
= DeltaP = Markedness a7)

Conversely, we can find the regression coefficifent
predicting P from R (minimizing the error in the
predictionsP):

rr JAD - BC]/ [(A+C)(B+D)]
=A/(A+C) — B/(B+D)
= DeltaP' = Informedness (18)

Finally we see that the Matthews correlation,

contingency matrix method of calculating the Pearso

product-moment correlation coefficiept,is defined by
re =[AD-BC]/ \[(A+C)(B+D)(A+B)(C+D)]

= Correlation = #[Informedness-Markedness] (19)

Given the regressions find the same line of bésthfese

gradients should be reciprocal, defining a perfect
Correlation of 1. However, both Informedness and

Markedness are probabilities with an upper bounti ab

perfect correlation requires perfect regression.e Th

squared correlation is a coefficient of proportidga
indicating the proportion of the variance in R that
explained by P, and is traditionally also interpdeas a
probability. We can now interpret it either as foant

probability that P informs R and R marks P, givest the
two directions of predictability are independentas the
probability that the variance is (causally) expéain
reciprocally. The sign of the Correlation will e same
as the sign of Informedness and Markedness anchitesi
whether a correct or perverse usage of the infoomaias
been made — take note in interpreting the fina piaf19).

Psychologists traditionally explain DeltaP in termf
causal prediction, but it is important to note thiae
direction of stronger prediction is not necessathy
direction of causality, and the fallacy of abduetiv
reasoning is that the truth of & B does not in general
have any bearing on the truth of B A.

If Pi is one of several independent possible caus®; of
Pi > Riis strong, buR - Pi is in general weak for any
specificPi. If Piis one of several necessary contributin
factors toR, Pi > R is weak for any singl®i, butR >
Pi is strong. The directions of the implication drag not
in general dependent.

In terms of the regression to Rt from P, since there are
only two correct points and two error points, ands are
calculated in the verticalR) direction only, all errors
contribute equally to tilting the regression dowoni the
ideal line of fit. This Markedness regression thusvides
information about the consistency of the Outcontelims
of having the Predictor as a Marker — the errorasuaeed
from the Outcom®R relate to the failure of the Mark®
to be present.

We can gain further insight into the nature of éhes

regression and correlation coefficients by redudiregtop
and bottom of each expression to probabilitiesidiig by
N, noting that the original contingency counts soniNt
and the joint probabilities after reduction sumiljo The
numerator is the determinant of the contingencyrimat
and common across all three coefficients, redutminigp ,

coefficients depends only on the Prevalence or &idkse
base variates. The regression coefficients, Bookmak
Informedness (B) and Markedness (M), may thus be
re-expressed in terms of Precision (Prec) or Reglahg
with Bias and Prevalence (Prev) or their inver$gs (

M = dtp / [Bias - (: Bias)]

q = dtp/ BiasG =dtp/  Evenness

=[ Precision — Prevalence]IBias (20)
B = dtp | [Prevalence - @Prevalence)]

= dtp/ PrevG=dtp/  Evenness

[ Recall —Bias] IPrev
Recall — Fallout
Recall + IRecall - 1
Sensitivity + Specificity — 1
(LR-1) - (1-Specificity)
(1-NLR) - Specificity
(LR -1) - (1-NLR) (LR-NLR) (21)

In the medical and behavioural sciences, the lhikeld
Ratio is LR=Sensitivity/[1-Specificity], and thesljative
Likelihood Ratio is NLR=Specificity/[1 —SensitivityFor
non-negative B, LR>1>NLR, with 1 as the chance case
We also express Informedness in these terms in (21)

The Matthews/Pearson correlation is expressediincesl
form as the Geometric Mean of Bookmaker Informednes
and Markedness, abbreviating their product as BaskM
(BM) and recalling that it is BookMark that acts as
probability-like coefficient of determination, nit$ root,
the Geometric Mean (BookMarkG or BMG):

BMG= dtp / W[Prev - (xPrev) - Bias - (1Bias)]
dip /[ PrevG - BiasG

dtp / Evennesg

= \[(Recall-Bias)-(PreePrev)]/(IPrev-IBias) (22)

These equations clearly indicate how the Bookmaker
coefficients of regression and correlation depenlgt on

the proportion of True Positives and the Prevalesrus
@ias applicable to the respective variables. Funtore,
Prev - Bias represents the Expected proportionroé T
Positives étp ) relative to N, showing that the coefficients
each represent the proportion of Delta True Pesitithe
deviation from expectatiordtp=tp-etp ) renormalized

in different ways to give different probabiliti€squations
(20-22) illustrate this, showing that these coéffits
depend only ordtp and either Prevalence, Bias or their
combination. Note that for a particuladtp these
coefficients are minimized when the Prevalence and/
Bias are at the evenly biased 0.5 level, howeven in
learning or parameterization context changing the
Prevalence or Bias will in general change bigth and
etp , and hence can chand® .

It is also worth considering further the relatioipshf the
denominators to the Geometric Means, PrevG of
Prevalence and Inverse Prevalence (IPrev—£rév is
Prevalence of Real Negatives) and BiasG of Bias and
Inverse Bias (IBias = -Bias is bias to Predicted
Negatives). These Geometric Means represent the

implication we will address now. Detection of the
predictor may reliably predict the outcome, with or
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Evenness of Real classes (Evengess Prev@) and

whist the reduced denominator of the TeQressiofadicted labels (Evenngss Bias@). We also introduce
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the concept of Global Evenness as the GeometrimMEa We now also express the Informedness and Markedness
these two natural kinds of Evenness, Evenpfiesdom forms of DeltaP in terms of deviations from expdcte
this formulation we can see that for a given retatielta values along with the Harmonic mean of the marginal
of true positive prediction above expectatiatip(), the cardinalities of the Real classes or Predicted I$abe
correlation is at minimum when predictions and omtes  respectively, definingDP, DELTAP, RH, PH and

are both evenly distributed/Evenness = VEvenness =  related forms in terms of theh-Relative probabilistic
VEvenness = Prev = Bias = 0.5), and Markedness anébrms defined as follows:

Bookmaker are individually minimal when Bias resp.

Prevalence are evenly distributed (viz. Bias réuev = et =Tp - pp;etn=rn ~pn (23)
0.5). This suggests that setting Learner Bias (armtp =tp—etp=dtp

regularized, cost-weighted or subsampled Prevajeioce =-dtn = -(tn — etn)

0.5, as sometimes performed in Artificial Neuratiark deltap = dtp — dtn = 2dp (24)

training is in fact inappropriate on theoreticabgnds, as th=2rp - m / [rp+m]
has Previously been shown both empirically anddase h=2 p. n/[ ri n] (25)
Bayesian principles — rather it is best to use heaBias = p PR-pNVLppp

Natural Prevalence which is in general much leas th5 DeltaP' or Bookmaker Informedness may now be
(Lisboa and Wong, 2000). expressed in terms afeltap andrh, and DeltaP or

Note that in the above equations (20-22) the denatmi Markedness analogously in termstieftap andph:

is always strictly positive since we have occure=nand B = DeltaP'= [etp+dtp]/rp — [efp-dtp]/m

predictions of both Positives and Negatives byiearl = etp/rp — efp/rn + 2dtp/rh

assumption, but we note that if in violation of sthi = 2dp/rh = deltap/rh (26)
constraint we have a degenerate case in which ikere,, _ _ _
nothing to predict or we make no effective prediatithen M = DeltaP= 2dp/ph = deltap/ph @7
tp=etp anddtp=0 , and all the above regression andrhese Harmonic relationships connect directly viith
correlation coefficients are defined in the limitPrevious Geometric relationships by observing that
approaching zero. Thus the coefficients are zeand ArithmeticMean = GeometricMe&ttiarmonicMean (0.5
only if dtp is zero, and they have the same sigdtps for marginal rates anl/2 for marginal counts). The use of
otherwise. Assuming that we are using the moddlitht  GeometricMean is generally preferred as an estirohte
way round, therdtp , B and M are non-negative, andcentral tendency that more accurately estimatesnitde
BMG is similarly non-negative as expected. If thedel is for skewed (e.g. Poisson) data, and as the cdimyialof

the wrong way round, thedtp , B, M and BMG can the family of Lp based averages (note that the Gtom
indicate this by expressing below chance performandVean is the Geometric Mean of the Harmonic and
negative regressions and negative correlationwandan Arithmetic Means).

reverse the sense Bfto correct this.

The absolute value of the determinant of the cgeficy 2.6 Effect of Bias & Prev on Recall & Precision

matrix,dp=dtp , in these probability formulae (20-22), The final form of the equations (20-22) cancels that

also represents the sum of absolute deviations tf@m common Bias and Prevalence (Prev) terms, conveting
expectation represented by any individual cell hadce to tpr (Recall) ortpa (Precision). We now recast the
2dp=2DP/Nis the total absolute relative error versuBookmaker Informedness and Markedness equations to
the null hypothesis. Additionally it has a geonwtrishow Recall and Precision as subject (23-24), deroto
interpretation as the area of a trapezoid in PNeapthe explore the affect of Bias and Prevalence on Reuall
unnormalized variant of ROC (Fiirnkranz & Flach, 200 Precision, as well as clarify the relationship aoBmaker

We already observed that in (normalized) ROC ameS;nSaSUMrerkedness to these ubiquitous and iniquitous

Informedness is twice the triangular area between a
positively informed system and the chance line,iatidis  Recall = Bookmaker (1-Prevalence) + Bias
corresponds to the area of the trapezoid defineca byBookmaker = (Recall-Bias)/ (1-Prevalence) (28)
system (assumed to perform no worse than chance), Brecision
any of its perversions (interchanging predictidvela but
not the real classes, or vice-versa, so as toa@arsystem
that performs no better than chance), and the émdpaf Bookmaker and Markedness are unbiased estimators of
the chance line (the trivial cases in which theesyslabels above chance performance (relative to respectitiedy
all cases true or conversely all are labelled JalSeich a predicting conditions or the predicted markers)ud&mpns
kite-shaped area is delimited by the dotted (systmd (23-24) clearly show the nature of the bias intcmtliby
dashed (perversion) lines in Fig. 1 (interchangitags both Label Bias and Class Prevalence. If operaging
labels), but the alternate parallelogram (interdiram chance level, both Bookmaker and Markedness will be
prediction labels) is not shown. The Informednebs o zero, and Recall, Precision, and derivatives sichha
perverted system is the negation of the Informesinéthe F-measure, will merely reflect the biases. Notat th
correctly polarized system. increasing Bias or decreasing Prevalence incrdsesll

and decreases Precision, for a constant level biased

= Markedness (1-Bias) + Prevalence
Markedness = (Precision—Prev) / (1-Bias) (29)

Powers 7 Evaluation: From Precision, Recall and F-Factor

performance. We can more specifically see that tlequivalence may be a result of unidentified causes,
regression coefficient for the prediction of Redalm alternate outcomes or both.

Prevalence is —Bookmaker and from Bias is +1, a
similarly the regression coefficient for the preiin of
Precision from Bias is —~Markedness and from Prexade
is +1.

n'fihe Perverse systems (interchanging the labelstioar e
the predictions or the classes, but not both) tsawdar
performance but occur below the chance line (simee
have assumed strictly better than chance perforenanc
In summary, Recall reflects the Bias plus a distedin assigning labels to the given contingency matrix).

estimation of Informedness and Precision refletis t
. . . Note that the effect of Prevalence on AccuracyaRend
Prevalence plus a discounted estimation of Markesine - .
Precision has also been characterized above (§2.3)

Given usually Prevalence << %: and Bias << %, theﬂrerms of Flach's demonstration of how skew entets i

complements Inverse Prevalence >> % and Inverse B%eir characterization in ROC analysis, and efietyi

>> 1 represent substantial weighting up of the trug . . ;.
unbiased performance in both these measures, aroa heaSSIgnS different costs to (False) Positives araiséf

also in F-factor. High Bias drives Recall up strignand Negatives.  This can be controlled for k_)y setlifg: ¢
Precision down according to the strength of Infainess; parametec appArop_naterltcl) reflect the desweq SkeVY ‘and
X R L cost tradeoff, wittt=1 defining skew and cost insensitive
high Prevalence drives Precision up and Recall dowf) . .
according to the strength of Markedness. versions. How?ver, only Irjformeqness (or equnmlt_en
such as DeltaP' and skew-insensitive WRAcc) prbcise
Alternately, Informedness can be viewed (21) as eharacterizes the probability with which a modébims
renormalization of Recall after subtracting off tteance the condition, and conversely only Markedness (@itdP)
level of Recall, Bias, and Markedness (20) cargee sis a precisely characterizes the probability that a doord
renormalization of Precision after subtracting dfe marks (informs) the predictor. Similarly, only the
chance level of Precision, Prevalence (and FlatiR#Acc, Correlation (aka Coefficient of Proportionality aka
the unbiased form being equivalent to BookmakeCoefficient of Determination aka Squared Matthews
Informedness, was defined in this way as discussed Correlation Coefficient) precisely characterizese th
§2.3). Informedness can also be seen (21) as peobability that condition and predictor inform/rkarach
renormalization of LR or NLR after subtracting dfeir other, under our dichotomous assumptions. Note the
chance level performance. The Kappa measure (Cohdretrachoric Correlation is another estimate ofRlearson
1960/1968; Carletta, 1996) commonly used in assesd@orrelation made under the alternate assumptioanof
agreement evaluation was similarly defined as w@anderlying continuous variable (assumed normally
renormalization of Accuracy after subtracting offet distributed), and is appropriate if we instead assthat
expected Accuracy as estimated by the dot produtieo we are dichotomizing a normal continuous variable
Biases and Prevalences, and is expressible as(Hutchison, 1993). But in this article we are makihe
normalization of the discriminant of contingency,explicit assumption that we are dealing with atighong
deltap, by the mean error rate (viz. Kappa isdichotomy that is intrinsically discontinuous.
deltap/[deltap +meanfp ,fn )]). All three measures
are invariant in the sense that they are propediiethe
contingency tables that remain unchanged whenipvéof|
the Inverse problem (interchange positive and regédr
both conditions and predictions). That is we observ

Although Kappa does attempt to renormalize a delias
estimate of Accuracy, and is thus much more meé#uiing
than Recall, Precision, Accuracy, and their biased
derivatives, it is intrinsically non-linear, doesatcount

for error well, and retains an influence of biasthsat there
does not seem that there is any situation when &app
would be preferable to Correlation as a standard
independent measure of agreement (Uebersax, 1987
Bonett & Price, 2005). As we have seen, Bookmaker
Informedness, Markedness and Correlation refleet th

Inverse Informedness = Informedness,
Inverse Markedness = Markedness,
Inverse Kappa = Kappa.

The Dual problem (interchange antecedent and coesé¢x
reverses which condition is the predictor and tteeljcted discriminant of relative contingency nomalizedarding

condition, and hence interchanges Precision an@lRec . N N N
) to different Evenness functions of the marginakBs@and
Prevalence and Bias, as well as Markedness apd N
revalences, and reflect probabilities relative the
Informedness. For cross-evaluator agreement, both

. corresponding marginal cases. However, we have seen
Informedness and Markedness are meaningful althou Lo )
] . . . . at Kappa scales the discriminant in a way tHéaes the
the polarity and orientation of the contingencwrisitrary. . o
T - . . _actual error without taking into account expectedredue
Similarly when examining causal relationship!

(conventionally DeltaP vs DeltaP’), it is usefuktmluate Stq cha‘nce, and in effect it is really just .usmg‘p th

- - L - . discriminant to scale the actual mean error: Kafpa
both deductive and abductive directions in deteimgithe _ :

o .dp/[dp+meanfp,fn )] = 1/[1+meanip,fn )/dp] which
strength of association. For example, the connectiq )
o approximates for small error fo- meanfp,fn  )/dp.

between cloud and rain involves cloud @ causal
antecedent of rain (but sunshowers occur occagypnal The relatively good fit of Kappa to Correlation and
and rain aone causal consequent of cloud (but cloudynformedness is illustrated in Fig. 2, along wiile poor fit
days aren't always wet) — only once we have idedtihe of the Rank Weighted Average and the Geometric and

full causal chain can we reduce to equivalenceJaoidof Harmonic (F-factor) means. The fit of the Evenness

to ROC, Informedness, Markedness & Correlation 8 Powers



Label Bias). In the case of Machine Learning, Dé4iing,

or other artificially derived models and rules, rthés the
further question of whether the training and
parameterization of the model has set the ‘comedvest’
Prevalence and Bias (or Cost) levels. Furthernsireuld
this determination be undertaken by referencegartbdel
evaluation measures (Recall, Precision, Informegines
Markedness and their derivatives), or should theehbe
set to maximize the significance of the results?

This raises the question of how our measures of
association and accuracy, Informedness, Markedmess
Correlation, relate to standard measures of sinifie.

This article has been written in the context ofevRiling
methodology in  Computational Linguistics and
Information Retrieval that concentrates on targetitpve
cases and ignores the negative case for the puopbsth
measures of association and significance. A classic
example is saying “water” can only be a noun beedlne
system is inadequate to the task of Part of Speech
identification and this boosts Recall and hencadfef, or

at least setting the Bias to nouns close to 1famdhverse
Bias to verbs close to 0. Of course, Bookmakek tiviin

be 0 and Markedness unstable (undefined, and very
sensitive to any words that do actually get lalellerbs).

We would hope that significance would also be Onf@ar
zero given only a relatively small number of veabédls).

We would also like to be able to calculate sigmifice
based on the positive case alone, as either thedfgative
information is unavailable, or it is not labelled.

Generally when dealing with contingency tablessit i
assumed that unused labels or unrepresented classes
dropped from the table, with corresponding reductid
degrees of freedom. For simplicity we have assuthad
the margins are all non-zero, but the freedomstraree
whether they are used or not, so we will not redbeen or
reduce the table.

Figure 2. Accuracy of traditional measures.
110Monte Carlo simulations with 11 stepped expe
Informedness levels (red line) with Bookmaker-
estimated Informedness (red dots), Markednessr{gree
dot) and Correlation (blue dot), and Kappa vereast There are several schools of thought about sigmifie
biased traditional measures Rank Weighted Averagetesting, but all agree on the utility of calculatia p-value
(Wav), Geometric Mean (Gav) and Harmonic/F-factor (see e.g. Berger, 1985), by specifying some statist
(Fav). The Determinant (D) and Evenness k-th roots exact test T(X) and setting p = Prob(TX)(Data)). In
(gR=PrevG and gP=BiasP) are also shown (+1). Hereour case, the Observed Data is summarized in a
K=4, N=128. contingency table and there are a number of tekishw
can be used to evaluate the significance of théngency

. . . .table.
weighted determinant is perfect and not easily
distinguishable but the separate components (Detanh For example, Fisher's exact test calculates thpaption
and geometric means of Real Prevalences and Hoedictof contingency tables that are at least as favdetabthe
Biases) are also shown (+1 for clarity). Prediction/Marking hypothesis, rather than the null
hypothesis, and provides an accurate estimate ef th
significance of the entire contingency table withany
constraints on the values or distribution. The
log-likelihood-based &test and Pearson's approximating
y? tests are compared against a Chi-Squared Distiibut
of appropriate degree of freedom=( for the binary
contingency table given the marginal counts arenkno
and depend on assumptions about the distributind, a
may focus only on the Predicted Positives.

2.7 Significance and Information Gain

The ability to calculate various probabilities from
contingency table says nothing about the signifieaof
those numbers — is the effect real, or is it withlie
expected range of variation around the values eegédy
chance? Usually this is explored by consideringat®n
from the expected value&TP and its relatives) implied
by the marginal countR@ PP and relatives) — or from
expected rates implied by the biases (Class Prexalend
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¥ captures the Total Squared Deviation relative e = 2N-dtp %/ Prev@ = 2N -rp2 -Prev@
expde_ctgtion, is fflere calllcurI]ated only ind_rel_atiqrpdu_lzitiv% = INrp2 Evennesg

predictions as often only the overt predictiondasidered, R2.

and the implicit prediction of negative case isoigd 2NBEvennesg 32)
(Manning & Schitze, 1999), noting that it suffidel Analogous formulae can be derived for the signifaeaof
count r=1 cells to determine the table and make the Markedness effect for positive real classesngthat
significance estimate. Howevey? is valid only for Evenness= BiasG.

reasonably S|zedAc0nt|ngenC|es (one rule of thl{z’rﬂ:lat 5 INedtp %/ Bias@ = 2N 12 - BiasG

the smallest cell is at least 5 and the Yates ailtiaiiis ON 1.2 Bias®

corrections will be discussed in due course, spd ewry, 2N-MR2-Evenne 33)
1999; McDonald, 2007): i

KM

The Geometric Mean of these two overall estimaiethie
full contingency table is

2N-dtp 2/ PrevGBiasG
2Nrp'Tg -PrevGBiasG
2Nr?g-Evenness= 2Np*Evenness

£ = (TP-ETP) 2/ETP + (FP-EFP) %EFP
= DTP/ETP + DFP %/EFP ,
= 2DP2/EHP,EHP=2ETP -EFP/[ETP+EFP] X kem
= 2N -dp%ehp,ehp=2etp  -efp/[etp+efp]

= 2N -dp%[rh -pp] = Ndp? / PrevG/ Bias = 2NBM -Evenness (34)

= LR2 ias= Nr2.- i

" NB Evenznes,s/ Béas NT'e Pre"‘_f/ Bias This is simply the total Sum of Squares Devianc8OB
= (N+PN) r'p-Prev (Bias— 1) accounted for by the correlation coefficient BMG2)2

(N+PN) -B*Evennesg (30)  over theN data points discounted by the Global Evenness

G? captures Total Information Gain, being N times th&&ctor, being the squared Geometric Mean of alr fou

Average Information Gain in nats, otherwise knoven aPositive and Negative Bias and Prevalence terms

Mutual Information, which however is normally exgsed (Evenness = PrevGBiasG). The less even the Bias and
in bits. We will discuss this separately under Gmneral Prevalence, the more data will be required to aehie

Case. We deal with or positive predictions in the caseSignificance, the maximum evenness value of 0.25gbe
of small effect, that islp close to zero, showing thaf@ achieved with both even bias and even Prevalenote N

twice as sensitive 3 in this range. that_ ‘for even bia§ or APrt_eyaIence, the corresponding
positive and negative significance estimates maieh
G.pl2 =TP IN(TP/IETP) + FP  -In(FP/EFP) global estimate.

=TPIn( 1+DTP/ETP)+FPIn( 1+DFP/EFP)  \yhen,2,. or G4, is calculated for a specific label in a
=~ TP(DTP/ETP) + FP -(DFP/EFP) dichotomous contingency table, it has one degree of
= 2N -dp%ehp freedom for the purposes of assessment of signéiza
= 2N-dp%[rh -pp]=N -dp? PrevG/ Bias The full table also has one degree of freedom, and
= NB2ZEvennesg Bias= Nr%-PrevG/ Bias summing for goodness of fit over only the positive
- 2 . prediction label will clearly lead to a lowgrestimate than
=~ (N+PN) r%-Prev@ (Bias— 1) . ! -

5 summing across the full table, and while summingfady
= (N+PN) -B*Evennesg G the negative label will often give a similar resitilwill in
In facty? is notoriously unreliable for small N and smallgeneral be different. Thus the weighted arithmetian
cell values, and &s to be preferred. The Yates correctiortalculated by’kg is an expected value independent of the
(applied only for cell values under 5) is to subtr@.5 arbitrary choice of which predictive variate is éstigated.
from the absolutelp value for that cell before squaring This is used to see whether a hypothesized maiotethe
completing the calculation (Lowry, 1999; McDonald alternate hypothesis, 4 is borne out by a significant
2007). difference from the usual distribution (the nulpleyhesis,
o Ho). Summing over the entire table (rather than ayieta
Our result (30-1) shows that andG significance of the labels), is used foi? or G independence testing
Informedness effect increases wifas expected, but also independent of any specific alternate hypothesis
with the square of Bookmaker, the Evenness of feeua (McDonald, 2007), and can be expected to achiey? a
(Evennesg = Pre_v(? = Prey(1-Prev)) and the number of gtimate approximately twice that achieved by theve
Predicted Negatives (viz. with Inverse Bias)! TISI®S ggtimates, effectively cancelling out the Evenriesm,
expected. The more Informed the contingency régard onq s thus far less conservative (viz. it is mitkely to
positives, the less data wil be needed to rea@htisfy p):
significance. The more Biased the contingency tde/a
positives, the less significant each positive i tre more x’em = Nt’g = Np>= N¢’= NB-M (35)
data is needed to ensure significance. The Biaghted
average over all Predictions (here 62 case: Positive
and Negative) is simpiKNB>PrevG which gives us an
estimate of the significance without focussing dhee
case in particular.

Note that this equates Pearson’s Rpp,with the Phi
Correlation Coefficientp, which is defined in terms of the
Inertia ¢?=y*/N . We now have confirmed that not only
does a factor of N connects the full contingendyt®
Mutual Information (MI), but it also normalizes ttiell
approximate x> contingency to Matthews/Pearson
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(=BMG=Phi) Correlation, at least for the dichotorsoualready standardized measures of deviation frorharul

case. This tells us moreover, that Ml and Corm@tatire
measuring essentially the same thing, but Ml aniddBh
not tell us anything about the direction of theretation,
but the sign of Matthews or Pearson or BMG Coti@ia
does (it is the Biases and Prevalences that argptied
and squarerooted).

The individual or averaged goodness-of-fit estiraase
in general much more conservative than full corimzy
table estimation of p by the Fisher Exact Test,thatfull
independence estimate can over inflate the stadsi to
summation of more than there are degrees of freetibe

full correlation respectivelyo{u=1). Note however that if
theempirical value is 0 or 1, these measures admit no error
versus no information or full information resp. tie
theoretical value is B=0, then a full +1 error is possible,
particularly in the discrete low N case where inh dze
equilikely and will be more likely than expectediues
that are fractional and thus likely to become zetibthe
theoretical value is B=1, then no variation is etpd
unless due to measurement error. Thu8|Xeflects the
maximum (low N) deviation in the absence of
measurement error.

conservativeness has to do both with distributiondlhe standard Confidence Interval is defined in sewh
assumptions of the? or G estimates that are only the Standard Error, SEESSE/(Ns (N-1))] =\[sse/(N-1)].

asymptotically valid as well as the approximatietune of
¥ in particular.

Also note thato bounds the probability of the null
hypothesis, but -is not a good estimate of the probabilty;

of any specific alternate hypothesis. Based onye&an
equal probability prior for the null hypothesis «(H.g.
B=M=0 as population effect) and an unspecific ciked

alternate hypothesis gle.g. the measured B and C as tru
population effect), we can estimate new posteri

probability estimates for Type | gHtejection,Alpha(p) )
and Type Il (H rejection, Beta(p) ) errors from the
posthoc likelihood estimation (Sellke, Bayari anerdger,
1999):

L(p) = Alpha(p)/Beta(p)

=~ —ep log(p) (36)
Alpha(p) = 1/[1+1/L(p)] (37)
Beta(p) = L/[1+L(p)] (38)

2.8 Confidence Intervals and Deviations

An alternative to significance estimation is coefide
estimation in the statistical rather than the dafaing
sense. We noted earlier that selecting the highesost

Itis usual to use a multiplier X of around X=2 gisen the
central limit theorem applies and the distributan be
regarded as normal, a multiplier of 1.96 corresgaida
confidence of 95% that the true mean lies in treziied
interval around the estimated mean, viz. the pritibab
that the derived confidence interval will bound thee
mean is 0.95 and the test thus corresponds appatiym
to a significance test withlpha =0.05 as the probability

of rejecting a correct null hypothesis, or a povest with

Peta =0.05 as the probability of rejecting a true full o

partial correlation hypothesis. A number of other
distributions also approximate 95% confidence &.2S

We specifically reject the more traditional apptoatich
assumes that both Prevalence and Bias are fixéidjnde
margins which in turn define a specific chance casfeer
than an isocost line representing all chance cases
cannot assume that any solution on an isocosthase
greater error than any other since all are by difin
equivalent. The above approach is thus argued to be
appropriate for Bookmaker and ROC statistics whsicd
based on the isocost concept, and reflects théhacimost
practical systems do not in fact preset the Biamnaich it
to Prevalence, and indeed Prevalences in earlg triay
be quite different from those in the field.

line or maximizing AUC or Bookmaker Informedness, B 1 he specific estimate of sse that we preserdlfira , the

is equivalent to minimizing fpr+fnr= (1-B) or

maximizingtpr+tnr  =(1+B), which maximizes the sum

probability of the current estimate for B occurrifighe
true Informedness is B=0, igsse go=|1- B|=1, which is

of normalized squared deviations of B from chanc&Ppropriate for testing the null hypothesis, anasstfor
sse g=B? (as is seen geometrically from Fig. 1). Note thaiefining unconventional error bars on B=0. Convgrse

this contrasts with minimizing the sum of squarssatice

sse g,=|B|=0, is appropriate for testing deviation from

from the optimum which minimizes the relative sufn othe full hypothesis in the absence of measuremeat,e

squared normalized error of the aggregated comtinge whilst Vsse g,=|B|=1 conservatively allows for full range
sse g=fpr +fnr 2. However, an alternate definition measurement error, and thus defines unconventanal

calculating the sum of squared deviation fropimum is
as a normalization the square of the minimum dégtan
the isocost of contingencgse g=(1- B).

This approach contrasts with the approach of cenisig
the error versus a specific null hypothesis reprsg the
expectation from margins. Normalization is to taege
[0,1] like |B| and normalizes (due to similar tgées) all
orientations of the distance between isocosts (ig/Vith
these estimates the relative error is constant thed
relative size of confidence intervals around thd and
full hypotheses only depend dw as |B| and {1B| are
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bars on B=M=C=1.

In view of the fact that there is confusion betwéeause

of beta in relation to a specific full dependency
hypothesis, B=1 as we have just considered, and the
conventional definiton of an arbitrary and unsfieci
alternate contingent hypothesis#® we designate the
probability of incorrectly excluding the full hygatsis by
gamma and propose three possible related kinds of
correction for thelsse for beta : some kind of mean of

|B| and [1B] (the unweighted arithmetic mean is 1/2, the
geometric mean is less conservative and the haomoni
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mean least conservative), the maximum or minimursystem) the traditional approach of checking th@63E
(actually a special case of the last, the maxim@ind (or 2SE) error bars don’t overlap is rather conatve (it
conservative and the minimum too low an underesémais enough for the value to be outside the rangeafor

in general), or an asymmetric interval that has\aee on
the null side and another on the full side (a patenrzed

special case of the last that corresponds to peleséased

usages like box plots, being more appropriate
distributions that cannot be assumed to be symachetri

TheVsse means may be weighted or unweighted and
particular a self-weighted arithmetic mean gives ol

recommended definition{sse g,=1- 2|Bfr2B% whilst an
unweighted geometric mean givésse g,=V[|B|- B and
an unweighted harmonic mean giw&se g,=|B} B> All

of these are symmetric, with the weighted arithoetean

giving a minimum of 0.5 at B=+0.5 and a maximuni @t
both B=0 and B=%1, contrasting maximally wiise go

two-sided test), whilst checking overlap of 1SEbebars

is usually insufficiently conservative given thhetupper
representdeta <alpha . Where it is expected that one
twill be better than the other, a 1.65SE error beluding
the mean for the other hypothesis is enough tacatdi
significance (or powerl-beta ) corresponding to
n .

ualpha (orbeta ) as desired.

The traditional calculation of error bars basedSom of
Squared Error is closely related to the calculatidn
Chi-Squared significance based on Total Squared
Deviation, and like it are not reliable when the
assumptions of normality are not approximated, iand
particular when the conditions for the central titheorem

and sse g, resp in these neighbourhoods, whilst there not satisfied (e.g. N<12 or cell-count<5). They not
unweighted harmonic and geometric means having theippropriate for application to probabilistic measuiof

minimum of 0 at both B=0 and B=x1, acting likee go

association or error. This is captured by the mgeaf the

and sse g, resp in these neighbourhoods (which therX=2 error bars for the fullsse g,) and null 6se go)
evidence zero variance around their assumed tiues)a hypotheses at N=16 (expected count of only 4 plér ce

The minimum at B=+0.5 for the geometric mean iséhé
for the harmonic mean, 0.25.

For this probabilistic |B| range, the weighted hamietic

Here we have considered only the dichotomous case b
discuss confidence intervals further below, in tietato
the general case.

mean is never less than the arithmetic mean aed th
geometric mean is never more than the arithmetienme 3~ Simple Examples

These relations demonstrate the complementaryenafur
the weighted/arithmetic and unweighted geometriame
The maxima at the extremes is arguably more apigtepr
in relation to power as intermediate results shoul

calculate squared deviations from a strictly intetdimte
expectation based on the theoretical distributaond will
thus be smaller on average if the theoretical Hygsis
holds, whilst providing emphasized differentiatianen
near the null or full hypothesis. The minima of tOttze
extremes are not very appropriate in relation
significance versus the null hypothesis due theetgtion
of a normal distribution, but its power dual versus full

hypothesis is appropriately a minimum as perfec{}1

correlation admits no error distribution. Based\ante
Carlo simulations, we have observed that setB®g,=

\sse go=1- |B| as per the usual convention is appropriatex
conservative on the upside but a little broad oe th

Bookmaker Informedness has been defined as the
Probability of an informed decision, and we havevaf
iéientity with DeltaP' and WRAcc, and the close
relationship (10, 15) with ROC AUC. A system thatkas

an informed (correct) decision for a target cowdgitwith
probability B, and guesses the remainder of the tiwill
exhibit a Bookmaker Informedness (DeltaP’) of B and
Recall of B-(1-Prev) + Bias. Conversely a proposed
tanarker which is marked (correctly) for a target dition

with probability M, and according to chance the a@mder

of the time, will exhibit a Markedness (DeltaP)\Mfand a
Precision of M-(1-Bias) + Prev. Precision and Remad

us biased by Prevalence and Bias, and variatfon o
system parameters can make them rise or fall
independently of Informedness and Markedness.
ccuracy is similarly dependent on Prevalence aiad:B

downside, whilst the weighted arithmetic mean2(B-(1-Prev)-Prev+Bias-Pred}( BiastPrev),
\sse g.=1- 2|B}+2B? is sufficiently conservative on the and Kappa has an additional problem of non-lingahite

downside, but unnecessarily conservative for high B

Note that these two-tailed ranges are valid forkBoaker

to its complex denominator:
B-(1-Prev)-Prev/ (IBias-Prev (Bias+Prev)/2).

Informedness and Markedness that can go positive gris thus useful to illustrate how each of thesheo
negative, but a one tailed test would be apprapfiat measures can run counter to an improvement in bvera
unsigned statistics or where a particular directin system performance as captured by InformednesshEor
prediction is assumed as we have for our contir}gengxammes in Table 2 (for N=100) all the other measise,

tables. In these cases a smaller multiplier of vé%ild

some quite considerably, but Bookmaker actuallisfal

suffice, however the convention is to use the @pihg  Taple 2 also illustrates the usage of the Bookmaker
of the confidence bars around the various hypothesgarkedness variants of thé statistic versus the standard

(although usually the null is not explicitly repeesed).

formulation for the positive case, showing also filie K

Thus for any two hypotheses (including the nulflass contingency version (fis=2 in this case).

hypothesis, or one from a different contingencyletaty

Note that under the distributional and approximativ

other experiment deriving from a different theory oassumptions foy? neither of these contingencies differ

to ROC, Informedness, Markedness & Correlation
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60.0% 40.0% «=0.05  3.85

4209730 A2 42 B 2000% Rec 50.00% F 58.82% e 229 g 192

58.09 30 28 58 M 19.70% Prec 71.43% G 59.76% Pir 222 w189
60 40 100 C 19.85% Rac 58.00%  18.60% 2’ 229 pwem 191
68.0% 32.0% «=0.05  3.85

76.09 56 20 76 B 19.85% Rec 82.35% F 77.78% ep 113 g 172

24094 12 12 24 M 2368% Prec 73.68% G 77.90% P 161 e 2.05
68 32 100 C 21.68% Rac 68.00% 1k 21.26% ¥ 113 ghem 187

Table 2. Binary contingency tablesColour coding is asin Table 1, showing example counts of correct (green) and
incorrect (pink) decisions and theresulting Bookmaker Informedness (B=WRacc=DeltaP, Mar kedness (C=DeltaP)
Matthews Correlation (C), Recall (Rec) Precision (Prec) Rand Accuracy (Rac) Harmonic Mean of Recall and Precision (F),
Geometric Mean of Recall and Precision (G), Cohen Kappa («),and » calculated using Bookmaker (x%+p), Markedness (x *+r)
and standard (y %) methods acr oss the positive prediction or condition only, aswell as calculated across the entire K=2 class
contingency using the newly proposed methods, all of which are designed to be referenced to alpha (o) according to the y 2
distribution, and are morereliabl e due to taking into account all contingencies. Single-tailed threshold is shown for a=0.05

sufficiently from chance at N=100 to be significénthe | the case where an unimpeachable Gold Standard is
0.05 level due to the low Informedness Markedn@sb agmployed for evaluation of a system, the approgriat
Correlation, however doubling the performance af thnormalization is for Prevalence or Evenness of rtfa
system would suffice to achieve significance at 881 go|g standard values, giving Informedness. Sihi it

given the Evenness specified by the Prevalenced@ndconstant, optimizing Informedness and optimizitgare
Biases). Moreover, even at the current performénas  gquivalent.

the Inverse (Negative) and Dual (Marking) Problemsw

highery’ significance, approaching the 0.05 level in somilore generally, we can look not only at what pragbs

instances (and far exceeding it for the InverselDuehe  Solution  best solves a problem, by comparing

KB variant gives a single conservative significateeel nformedness, but which problem is most usefullyed

for the entire table, sensitive only to the direatiof DY & proposed system. In a medical context, fample,

proposed implication, and is thus to be preferneer ¢he it is usual to come up with potentially useful muzdions

standard versions that depend on choice of conditio  OF tests, and then explore their effectivenesssacaowide
range of complaints. In this case Markedness may be

Incidentally, the Fisher Exact Test shows signif@to appropriate for the comparison of performance acros
the 0.05 level for both the examples in Table 2isThdifferent conditions.

corresponds to an assumption of a hypergeometric . o
distribution rather than normality — viz. all assigents of Recall and Informedness, as biased and unbiasehtsar
events to cells are assumed to be equally liketgrgihe ©Of the same measure, are appropriate for testing
marginal constraints (Bias and Prevalence). Howitver €ffectiveness relative to a set of conditions, ahd

in appropriate given the Bias and Prevalence ate rifiPortance of Recall is being increasingly recogdias
specified by the experimenieradvance of the experiment ~ having an important role in matching human perfaroea

as is assumed by the conditions of this test. iaisalso for example in Word Alignment for Machine Transtati
been demonstrated empirically through Monte Carlf~raser and Marcu, 2007). Precision and Markedress
simulation as discussed later. See Sellke, Bayand Piased and unbiased variants of the same measere, a
Berger (2001) for a comprehensive discussion oneiss @PPropriate for testing effectiveness relative tsea of
with significance testing, as well as Monte Carid@redictions. This is particularly appropriate where do
simulations. not have an appropriate gold standard giving cotaels

for every case, and is the primary measure used in
Information Retrieval for this reason, as we carkmtw

the full set of relevant documents for a query &mas

If we have a fixed size dataset, then it is argyabfficient  cannot calculate Recall.

to maximize the determinant of the unnormalized . . .

contingency matrixDT. However this is not comparableHowever*, in this latter case of an |ncor‘nApIeter
across datasets of different sizes, and we thud tee characterized test set, we do not have a fully ifipdc

normalize forN, and hence consider the determinant of thgontingency matrix and cannot apply any of the othe

normalized contingency matridt . However, this value measures we _have |ntrod_uced.‘ Ra’ghgr, whether  for
is still influenced by both Bias and Prevalence. Information Retrieval or Medical Trials, it is agsed that

a test set is developed in which all real labedsraliably
In the case where two evaluators or systems amegbeibut not necessarily perfectly) assigned. Noteithabme
compared with no a priori preference, the Correfati domains, labels are assigned reflecting differemels of
gives the correct normalization by their respecBv@ses, assurance, but this has lead to further confusisalation
and is to be preferred to Kappa. to possible measures and the effectiveness of the

4 Practical Considerations
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techniques evaluated (Fraser and Marcu, 2007). tategorized withK labels, and again we will assume that
Information Retrieval, the labelling of a subset@fvant each class is non-empty unless explicitly allowtbdk (is
documents selected by an initial collection of eyt can because Precision is ill-defined where there are no
lead to relevant documents being labelled as ragele predictions of a label, and Recall is ill-definetlexe there
because they were missed by the first generatstersyis — are no members of a class).

so for example systems are actually penalized for

improvements that lead to discovery of relevans.1 Generalization of Association

documents that do not contain all specified queoyds. .
Thus here too, it is important to develop test tes of Powers (2003) derives Bookmaker Informedness (41)

appropriate size, fully labelled, and appropriate the analogously to M_utua_l Information & Conditional Emy
correct application of both Informedness and Mankag, (39-40) @ a pointwise average across the contiygen

as unbiased versions of Recall and Precision. cells, expressed in terms of label probabilitied Pwhere
Pe(l) is the probabilty of Predictionl, and

This Information Retrieval paradigm indeed provides label-conditioned class probabilitieg(E|l) , where R(c|l)
good example for the understanding of the Infornesdn s the probability that the Prediction labeldd actually of
and Markedness measures. Not only can documemgal class, and in particular Pg(l|l) = Precisionl), and
retrieved be assessed in terms of prediction @ivegice where the delta functions are mathematical shodthéor
labels for a query using Informedness, but qua@sbe Boolean expressions interpreted algorithmicallyira€,
assessed in terms of their appropriateness fodd¢hied with true expressions taking the value 1 and false
documents using Markedness, and the different kaids expressions 0, so tha§ = (c =) represents the standard
search tasks can be evaluated with the combinafitiie  Dirac delta function andy = (c #I) its complement.

two measures. The standard Information Retrieitna

that we do not need to firall relevant documents (so thatMI(RIP) =21 Pel) 2e Palell) [Hlog(Pa(Cl)PR(0)] (39)
Rﬁcall (;r Informhedness isb not ?c& relevant) appdiah;!;‘:in HRIP) =>1 Pe(l) D¢ Pr(cll) [Hlog(Pr(cl))] (40)
where there are huge numbers of documents col

required informatiog and a small number can bggtﬂ;MB B(RIP) =21 Pe(l) Xc Pa(cll) [Pe()/(Pa(l) — )] (41)

to provide that information with confidence. Howev We now define a binary dichotomy for each labweith |
another kind of Document Retrieval task involves and the correspondingas the Positive cases (and all other
specific and rather small set of documents for Whi® |abels/classes grouped as the Negative case). \ke ne
need to be confident that all or most of them Haeen denote its Prevalence PrBv(and its dichotomous
found (and so Recall or Informedness are especialdbokmaker Informedness B(and thus can simplify (41)
relevant). This is quite typical of literature rewi in a to

specialized area, and may be complicated by new
dzvelopments being present)(;d in quite Sifferennk){)y B(RIP) =2, Prev() B() (42)
researchers who are coming at it from differenéations, Analogously we define dichotomous Bigs( and
if not different disciplinary backgrounds. A goedample Markednessy) and derive

of this is the decade it has taken to find thediigre that .

discusses the concept variously known as EdgM(PlR) =2 BiasE) M(c) (43)
Informedness, Regression, DeltaP' and ROC AUC - affthese formulations remain consistent with the dkidim
perhaps this wheel has been invented in yet otreekts  of Informedness as the probability of an informedision
as well. versus chance, and Markedness as its dual. The &eom
Mean of multi-class Informedness and Markednesddvou
appear to give us a new definition of Correlatiomose

So far we have examined only the binary case wifffiiare provides a well defined Coefficient of

dichotomous Positive versus Negative classes dredsla Determination. Recall that the dichotomous forms of
Markedness (20) and Informedness (21) have the

It is beyond the scope of this article to consitlee determinant of the contingency matrix as common
continuous or multi-valued cases, although the &  numerators, and have denominators that relatetortlye
Correlation is a discretization of the Pearson €ation margins, to Prevalence and Bias respectively. CGative,

with its continuous-valued assumption, and the 8pa@a  Markedness and Informedness are thus equal when
Rank Correlation is an alternate form applicable t@revalence = Bias. The dichotomous Correlation
arbitrary discrete value (Likert) scales, and Teftoaic  Coefficient would thus appear to have three factars
Correlation is available to estimate the correfatid an common factor across Markedness and Informedness,
underlying continuous scale. If continuous measurggpresenting their conditional dependence, andofsct
corresponding to Informedness and Markedness afgpresenting Evenness of Bias (cancelled in Maresn

required due to the canonical nature of one ofstides, and Evenness of Prevalence (cancelled in Informesjne
the corresponding Regression Coefficients areadal  each representing a marginal independence.

5 The General Case

It is however, useful in concluding this articledonsider |n fact, Bookmaker Informedness can be driven ey
briefly the generalization to the multi-class cased we  close to 0 whilst Markedness is driven arbitragilyse to 1,
will assume that both real classes and predictesbel are  demonstrating their independence — in this casalRau
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- - i Determination acts as the joint probability of naltu
' H | ’, H“ determination, but to the extent that they are deget,
s‘
IS

i y i

\

"H ‘Jr\ i the Correlation Coefficient itself acts as the foin
1_\\/Ju W ’\W probability of mutual determination.

These conditions carry over to the definition of
Correlation in the multi-class case as the Geombtgan

| of Markedness and Informedness — once all numerator
are fixed, the denominators demonstrate marginal
independence.

4 We now reformulate the Informedness and Markedness
measures in terms of the Determinant of the Coeting
and Evenness, generalizing (20-22). In particul@r note
4 that the definition of Evenness in terms of the @ewic
Mean or product of biases or Prevalences is camist
with the formulation in terms of the determinabfsTand
det (generalizing dichotomouBP=DTPand dp=dtp )
EEE and their geometric interpretation as the area of a
e A A“/j‘ i parallelogram in PN-space and its normalization to
\/ LY iy ROC-space by the product of Prevalences, giving
| Informedness, or conversely normalization to Manes

by the product of biases. The generalizatiorD&T to a
’ volume in high dimensional PN-space adelt to its

i
" ’ \} \‘,

‘»/

|

‘ normalization by product of Prevalences or biasses,
’ sufficient to guarantee generalization of (20-28)K
\ classes by reducing frokD to SSD so that BMG has the

04- Ll I form of a coefficient of proportionality of variaec
e M = [det/ BiasG%K
B = det ?*/ Evenness (44)
" §€aa B ~ [det/ﬂK Prevg< 1%«
:53:11 = det | Evennesg. (45)
8- —pi1 I BMG ~ det /[ PrevG - BiasB
e =det ¢/ Evenness. (46)
Bfﬂaaaﬁﬁ We have marked the Evenness terms in these egsiation

15 0 m © m i with a trailing plus to distinguish them from othesages,
and its definitions are clear from comparison oéith
denominators. Note that the Evenness terms for the
generalized regressions (44-45) are not Arithmdgans

but have the form of Geometric Means. Furthermthre,
dichotomous case emerges fdf=2 as expected.

) ) A Empirically (Fig. 3), this generalization matcheslimear
calculated using &X? and Fisher estimates, and ~ g_g ¢ B=1, but fares less well in between theeags,
Correlation estimates calculated from the Determtio& suggesting a mismatched exponent in the heuristic

Contingency using two different exponentds DB & conversion of K dimensions to 2.
DM) and 1/[X- 2] (DBa and DMa). The difference
between the estimates is also shown. Here K=4,2B=1 In Fig. 3 we therefore show and compare an alternat
X=1.96,0=p=0.05. exponent of 1/(B-2) rather than the exponent ofk2/

shown in (44 to 45). This also reduces to 1 amtdé¢he
Precision will be driven to or close to 1. The aegily ~ €xpected exact correspondencelo. This suggests that
close hedge relates to our assumption that aligteetand What is important is not just the number of dimensj but
real classes are non-empty, although appropriatésli the also the number of marginal degrees of freedom:
could be defined to deal with the divide by zerogtems ~K+2(K- 1), but although it matches well for high degrees
associated with these extreme cases. TechnicaIRf, association it shows similar error at low infaumess.
Informedness and Markedness are conditionalijhe precise relationship between Determinant and
independent — once the determinant numerator & fix Correlation, Informedness and Markedness for timeige
their values depend only on their respective matgincase remains a matter for further investigation. We
denominators which can vary independently. To thens  however continue with the use of the approximatiased
that they are independent, the Coefficient of" 2K

Figure 3. Determinant-based estimates of correlatin
110Monte Carlo simulations with 11 stepped expected
Informedness levels (red line) with Bookmaker-
estimated Informedness (red dots), Markednessr{gfe®
and Correlation (blue dot), with significance (p+1)
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The Evenness (Prev.IPrev) concept corresponds to theells is appropriate for testing the null hypotkest, and
concept of Odds (IPrev/Prev), where Prev+IPrevat, athe calculation versuaslpha , but is patently not the case
Powers(2003) shows that (multi-class) Bookmakewhen the cells are generatedKgondition variables and
Informedness corresponds to the expected returbgter K prediction variables that mirror them. Thus arection
made with a fair Bookmaker (hence the name). Fiwen tis in order for the calculation of beta for somedfic
perspective of a given bet (prediction), the reinoneases alternate hypothesis 4Hor to examine the significance of
as the probability of winning decreases, which rsehat the difference between two specific hypothesgsiht]! H;
an increase in the number of other winners camase the which may have some lesser degree of difference.

return for a bet on a given horse (predicting aiger Whilst many corrections are possible, in this case
class) through changing the Prevalences and thus . .
correcting the degrees of freedom directly seems
Evennesg and the Odds. The overall return can thug - ] : - 5
. . ) L appropriate and whilst using = (K-1)° degrees of
increase irrespective of the success of bets atioal to . . . i
: - freedom is appropriate falpha , usingr = K-1 degrees
those new wins. In practice, we normally assumewa ) -
. o - - of freedom is suggested fieta under the conditions
are making our predictions on the basis of fixea (it where significance is worth testing, given the aimn
necessarily known) Prevalences which may be estiinat 9 99

priori (from past data) or post hoc (from the e tal (mirroring) between the variables is almost conglén
data itself), and for our purposes are assumedeto Besting againgteta , as a threshold on the probability that

estimated from the contingency table a ‘specificl aftemate hypotlhesis of the ’(ested m

’ being valid should be rejected. The difference in’a
statistic between two systems¥£ K-1) can thus be tested
for significance as part of comparing two systerie (
In relation to Significance, the single clags? and Gp>  Correlation-based statistics are recommendedsrctise).
definitions both can be formulated in terms of celints The approach can also compare a system againstiel mo
and a function of ratios, and would normally be med With specified Informedness (or Markedness). Two
over at leastK-1) cells of aK-class contingency table Special cases are relevant here, the null hypothesis
with (K-1)? degrees of freedom to produce a statistic fg¢orresponding to null Informedness (B = 0: testiffha
the table as a whole. However, these statistiesnat With r = (K-1)), and H, the full hypothesis
independent of which variables are selected foluatian ~ corresponding to full Informedness (B = 1. testiega
or summation, and the p-values obtained are thite quwith r =K-1).

misleading, and for highly skewed distributions ténms Equations 47-49 are proposed for interpretationeund

of Bias or Prevalence) can be outlandishly incardéeve =~ "_ "\ 4 degrees of freedom (plus noise) and are

sum Iog—!ikelihood (31) over a® cells we geNMI(R|IP) hypothesized to be more accurate for investigating
which is invariant over Inverses and Duals. probability of the alternate hypothesis in questieh,

The analogous Prevalence-weighted multi-classstitati (beta ).

generalized from the Bookmaker Informedness form cgquations 50-52 are derived by summing over e}
the Sigr_lificance statistic, and the Bias-weightedistic complements of each class and label before applyiag
generalized from the Markgdnes; form, extend EQH’.#B .Prevalence or bias weighted sum across all prediénd
to thel_(>2 case I,Jy prolpablllty—welghted slum‘mlatlon (this 'Ronditions. These measures are thus applicable for
a weighted Arithmetic Mean of the individual CaseShterpretation under = (K-1)% degrees of freedom (plus
targeted ta=K- 1 degree of freedom): biases) and are theoretically more accurate famatihg
¥xe = KN -B%Evennesg. (47) the probability of the null hypothesisoHalpha ). In
_ 2 practice, the difference should always be sligtst tfze
xan = KN -M?Evenness. “8) cumulative density function of the gamma distribotj?
Prem= KN -B-M-Evennesg. (49) s locally near linear im ) reflecting the usual assumption
_ dr=1 th h d thatalpha andbeta may be calculated from the same
For k=2 and r=1, the Evenness term; were { € pro uct §tribution. Note that there is no difference ither the
two complementary Prevalence or Bias terms in e ¢, 1ae nor whenK=2.
Bookmaker derivations and the Significance Derorai

5.2 Generalization of Significance

and (30) derived a single multiplicative Evennesstdr X'xe =K (K-1yN-B*Evennesg (50)
from a squzared Evenne_ss factor in the numeratd)!idgr em =K (K-1yNMZ?Evenness (1)
from dtp 4, and a single Evenness factor in the2

denominator. We will discuss both these Evennassste % xem = K (K-1)N-B-M-Evennesg. (52)

in thea Iaterlsecnon: ,We h_ave ma“fe‘,’ the_ Everieess Equations 53-55 are applicable to naive unweighted
in (47-49) with a trailing minus to distinguish thérom g, ymation over the entire contingency table, beb al
the forms used in (20-22,44-46). correspond to the independence test withe (K-1)
One specific issue with the goodness-of-fit apphoadiegrees of freedom, as well as slightly underestigdut
applied toK-class contingency tables relates to the up @symptotically approximating the case where Evesiiges
(K-1) degrees of freedom, which we focus on now. Th@aximum in (50-52) at/K % When the contingency table

assumption of independence of the countkirl’ of the is uneven, Evenness factors will be lower and aemor
conservative p-value will result from (50-52), vehil
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summing naively across all cells (53-55) they czadIto
inflated statistics and underestimated p-valueswéver,
they are the equations that correspond to commageusf
they? and G statistics as well as giving rise implicitly to
Cramer's V = §INK- 1)]*2 as the corresponding |™ s

estimate of the Pearson correlation coefficipntso that
Cramer’s V is thus also likely to be inflated aseatimate
of association where Evenness is low. We howewar n
these, consistent with the usual conventions, as d
definitions of the conventional forms of th2 statistics
applied to the multiclass generalizations of thelBoaker

S12
it ati : . . ® s1
accuracy/association measures Figure 4. Chi-squared against degrees of freedom
Ye= (K-1)NB? (53) cumulative density isocontours ¢ = 0.05: cyan/yellow)
w= (K=1yNM? (54)
Kem = (K-1)NB-M (55)

Note that Cramer’'s V calculated from standard fulare assumed to be asymptotically normal and arecteqp
contingencm2 and @ estimates tends vastly overestimateo be normalized to mearr0, standard deviatios=1, and
the level of association as measured by Bookmahker aboth the Pearson and Matthews correlation andfrend
Markedness or constructed empirically. It is afsportant G? significance statistics implicitly perform such a
to note that the full matrix significance estimaesd normalization. However, this leads to significance
hence Cramer's V and similar estimates from thgse statistics that vary according to which term ifdous if
statistics) are independent of the permutationsedicted we sum over rather thark’ In the binary dichotomous
labels (or real classes) assigned to the contiygeides, case, it makes sense to sum over only the conditfon
and that in order to give such an independent astim primary focus, but in the general case it involiess/ing
using the above family of Bookmaker statistics,isit out one case (label and class). By the Central tLimi
essential that the optimal assignment of labetsdsle — Theorem, summing oveK{ 1)? such independent z-scores
perverse solutions with suboptimal allocations atfels gives us a normal distribution with=(K- 1).

will underestimate the significance of the continge
table as they clearly do take into account whatisirging
to demonstrate and how well we are achieving that g

We define a single casé.p from they?,p (30) calculated
for labell = classc as the positive dichotomous case. We
next sum over these for all labels other than argetc to
The empirical observation concerning Cramer's \get a K- 1)? degree of freedom estimate ixe given by
suggests that the strict probabilistic interpretatof the

multiclass generalized Informedness and Markednegs, =Yeh Bote =X Lo — Toip (56)
measures (probability of an informed or marked slen),

is not reflected by the traditional correlation sw@®s, the We then perform a Bia3(weighted sum Ovekz-\xp to

squared correlation being a coefficient of propodte ,chieve our label independerit-(L)? degree of freedom
determination of variance and that outside of thecase estimate;’xg as follows (substituting from equation 30
where they match up with BMG, we do not know how t@,en 39):

interpret them as a probability. However, we alsterhat

Informedness and Markedness tend to correlate emd @’xe =Y Bias() - [NB*Evennesg(l)/ Bias() — 1%l
only conditionally independent, so that their predu =K ke — 7xe = (K- 1) vke

cannot necessarily be interpreted as a joint pribtyab =K(K- 1)-NB*Evennessg (57)
notwithstanding that it has the form of a probapili

. . This proves the Informedness form of the genermlize
We note further that we have not considered adiedric (K- 1} degree of freedom? statistic (42), and defines

correlation, which estimates the regression of rassu Evenness as the Arithmetic Mean of the individual
unqerlying continuoug variables to allow calculatiof  §ichotomous Evennegd) terms (assuming B is constant).
their Pearson Correlation. The Markedness form of the statistic (43) follows b

. analogous (Dual) argument, and the Correlation fi@)
Sketch Proof of General Chi-squared Test is simply the Geometric Mean of these two formsteNo
The traditional’ statistics sums over a number of term§0wever that this proof assumes that B is constartiss
specified by r degrees of freedom, stopping oncéll labels, and that assuming the determindet is
dependency emerges. Thé Gatistic derives from a constant leads to a derivative of (20—21) |n‘v0IV|ag
log-likelihood analysis which is also approximatémt Harmonic Mean of Evenness as discussed in the next
less reliably, by the? statistic. In both cases, the variateS€Ction-:
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TP practice, when used to test two systems or qublxo

v J | \ H | than the null, the models should be in a suffidyelitear

‘ ‘ I part of the isodensity contour to be insensitivethe

‘ A choice of statistic and the assumptions about degoé
freedom. When tested against the null model,atively
constant error term can be expected to be intratibge
using the lower degree of freedom model. The error
introduced by the Cramer’'s V (K-1 degree of freejlom
approximation to significance from?®ry* can be viewed

in two ways. If we start with a Gor ¥* estimate as
intended by Cramer we can test the accuracy of the
estimate versus the true correlation, markedness an
informedness as illustrated in Fig. 3. Note thatoae see
here that Cramer’s V underestimates associatiomiétr
levels of informedness, whilst it is reasonablyuaate for
lower levels. If we use (53) to (55) to estimate
significance from the empirical association measunee
will thus underestimate significance under condiiaf
high association — viz. it the test is more corstve as
the magnitude of the effect increases.

5.3 Generalization of Evenness

The proof that the product of dichotomous Evenness
factors is the appropriate generalization in refato the
multiclass definition of Bookmaker Informedness and
Markedness does not imply that it is an appropriate
generalization of the dichotomous usage of Eveniress
relation to Significance, and we have seen that the
Arithmetic rather the Geometric Mean emerged in the
above sketch proof. Whilst in general one wouldiass
that Arithmetic and Harmonic Means approximate the
Geometric Mean, we argue that the latter is theemor
appropriate basis, and indeed one may note that d@nly
approximates the Geometric Mean of the other twanmse
but is much more stable as the Arithmetic and Haimo
means can diverge radically from it in very uneven
ituations, and increasingly with higher dimensiitpa
dz)n the other hand, the Arithmetic Mean is insensitd
evenness and is thus appropriate as a baseline in
determining evenness. Thus the ratios betweeméaas,
as well as between the Geometric Mean and the gegome
mean of the Arithmetic and Harmonic means, give tis
good measures of evenness.

4l I I I

Figure 5. lllustration of significance and Cramer'sV.
110Monte Carlo simulations with 11 stepped expecte
Informedness levels (red line) with Bookmaker-
estimated Informedness (red dots), Markednessr{gree,
dot) and Correlation (blue dot), with significar(ps-1)
calculated using & X? and Fisher estimates, and
Cramer’s V Correlation estimates calculated frorthbo
G?and X. Here K=4, N=128, X=1.96,=$=0.05.
On geometric grounds we introduced the Determioént
o . Correlation,det , generalizingdp, and representing the
The simplified K- 1) degree of freedonfy statistics were o1 me of possible deviations from chance coverethb
motivated as weighted averages of the dichotomo%get system and its perversions, showing its
statistics, but can also be seen to approxmate)g‘zt,hel normalization to and Informedness-like statistic is
statistics given the observation that for a 'ECll Evenness, the product of the Prevalences (and is exactly
threshold on the null hypothesis,llpha < 0.05, the” | tormedness fok=2). This gives rise to an alternative
cumulative isodensity lines are locally linearifFig. 4).  gichotomous formulation for the aggregate falseitives
Testing differences within beta threshold as discussed gqr for an individual case in terms of el negative
above, is appropriate using tffg series of statistics since cases, using a ratio or submatrix determinant bonsrix
they are postulated to havk-(1) degrees of freedom. ,qqyct of Prevalences. This can be extended boabes
Alternately they may be tested according tg;ﬁ;&serlezs while reflectingK- 1 degrees of freedom, by extending to
of statistics given they are postulated to differ({-1)° e ) contingency matrix determinantet , and the full
degrees of freedom, namely the noise, artefactearut product of Prevalences, as our definition of anofbem
terms that make the cells different between the twgr Evenness, Evennggsbeing the Harmonic Mean of the
hypotheses (viz. that contribute to decorrelatiol). gichotomous Evenness terms for constant determinant
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Ywe =KN -det ¢/ Evennesg (58) In Equations 63-65 Confidence Intervals derivedrfithe

2 2K sse estimates of §2.8 are subscripted to show those
Loan =KN -det 70/ Evenness, (59) appropriate to the different measures of associatio
Yrem=KN -det 7/ Evennesgs (60) (Bookmaker Informedness, B; Markedness, M, and thei
geometric mean as a symmetric measure of Cornelatip
Those shown relate tbeta (the empirical hypothesis
Evennesg = [T prev()]z’K =PrevG (61) based on the calculated B, giving rise to a tegtasber),

. . but are also appropriate both for significanceirigsthe
and that t‘he relationship between the three forhs g hypothesis (B=0) and provide tight (0-widthunds
Evenness is of the form on the full correlation (B=1) hypothesis as appiatprto
Evenness = Evenness / Evennesg (62) its signification of an absence of random variatamd

) ) hence 100% power (and extending this to include
where the + form is defined as the squared Geometrheasurement error, discretization error, etc.)

Mean (44-46), again suggesting that the — formeist b . L . i
approximated as an Arithmetic Mean (47-49). Thavab The numeric subsprlpt is2 as notW[thstandlng tﬁerdr_n
division by the Harmonic Mean is reminiscent of th@SSumptions behind the calculation of the confidenc
Williams' correction which divides the ‘Gralues by an [ntervais (0 for the null hypothesis correspondity
Evenness-like terng=1+(a 2-1)/6Nr  wherea is the alpha =0.05, 1 for the alternate hypothe3|_s corrgspondlng
number of categories for a goodness-offit tet, to beta =0.05 based on the weighted arithmetic model,
(McDonald, 2007) or more generalig, PrevH (Williams, and 2 for the full correIaFion hypothesi; gorresﬁng to
1976) which has maximuri when Prevalence is eVen'gammao.os —_for practlcql purposes it is reasonable to
andr=K-1 degrees of freedom, but for the more relevari{Se 12 Bl to define the basic confidence interval fop{!
usage as an independence test on a complete camting Clgq and Ch,, given variation is due solgly tq unlknown
table withr=(K-1) 2 degrees of freedom it is given byfactors other than measurement and (_:ilscretlAzammT.e
a’-1=(K/ PrevH1) -(K/ BiasH1) where PrevH and Note_ ‘that a!l error, of whatsoever kind, will lead
BiasH are the Harmonic Means across khelasses or €MPirical estimates B<1.

labels respectively (Williams, 1976; Smith et d981; |f the empirical (Cg4) confidence intervals include B=1,
Sokal & Rohlf, 1995; McDonald, 2007). the broad confidence intervals () around a theoretical

In practice, any reasonable excursion from Evermilss SXPectation of B=1 would also include the empirical
be reflected adequately by any of the means diedysscontingency — it is a matter of judgement basedaon
however it is important to recognize that the +rfos understandlng of coqtrlbutlng error whether thediipsis
actually a squared Geometric Mean and is the ptogfuc B=1 i supported given non-zero error. In general B
the other two forms as shown in (62). An unevers bia should be achieved empirically for a true correfati
Prevalence will reduce all the corresponding EveaneUnless there are measurement or labelling erratsafe
forms, and compensate against reduced measures®gfluded from the informedness model, since B<1 is

association and significance due to lowered deteamis. always significantly different from B=1 by defiriti
(there is 1 B=0 unaccounted variance due to guessing).

Whereas broad assumptions and gross accuracy \aithin . . o

order of magnitude may be acceptable for Calc@aﬂd\lone of the traditional clonfld(‘encg or significance
significance tests and p-values (Smith et al., 1oBis Measures fully account for discretization error gk or
clearly not appropriate for estimate the strength dor the distribution of margins, which are ignoregt
associations. Thus the basic idea of Cramer'sfiawed traditional approaches. To deal with discretizatésmnor
given the rough assumptions and substantial errof{ Can adopt an sse estimate that is either cdnstan
associated with significance tests. It is thusebdb start Independent of B, such as the unweighted arithnnesian,

with a good measure of association, and use anaogd’ & non-trivial function that is non-zero at b&h0 and
formulae to estimate significance or confidence. B=1, such as the weighted arithmetic mean whictisiee:

Recall that the + form of Evenness is exemplifigd b

o ‘ Clg4= X [1-2 |B}2B?3 /V[2E (N-1)] (66)
5.4 Generalization of Confidence Clus= X - [1-2 [BIF2B?] /2 E (N-1)] ©7)
The discussion of confidence generalizes direailyhe . )
general case, with the approximation using Bookmakgl‘”_x [1-2 BF2B7 /N[2E (N-1)] (68)

Informedness, or analogously Markedness, applyifgubstituting B=0 and B=1 into this gives equival@is
directly (the Informedness form is again a Prewsen for the null and full hypothesis. In fact it is fiafent to use
weighted sum, in this case of a sum of squaredusersthe B=0 and 1 confidence intervals based on thimwna
absolute errors), viz. since for X=2 they overlap at N<16. We illustratets a

v 1. N marginal significance case in Fig. 6, where theydar
Claz= X [1- [B] /N2 & (N-1)] (63) difference between the significance estimatesgiarahith
Clwz= X - [1- |B]] /N2 E (N-1)] (64) Fisher showing marginal significance or better a@mo

VI N everywhere, & for B>~0.6,%° for B>~0.8. >~95% of
Clez=X- [1- B]] /N[2E (N-1)] (65) Bookmaker estimates are within the confidence barsds
required (with 100% bounded by the more consergativ

Powers 19 Evaluation: From Precision, Recall and F-Factor

TT T T 7T thus we set the Evenness factor E=PrevG*BiasGKote

H‘\ that the difference between Informedness and Madesi
also relates to Evenness, but Markedness valudikelse
to lie outside bounds attached to Informedness with
probability greater than the specifiggta . Our model
can thus take into account distribution of margirevided
the optimal allocation of predictions to categories
(labelling) is assigned.

T ‘H‘\juw"‘“
| T

The multiplier X shown is set from the appropriate
(inverse cumulative) Normal or Poisson distribufiand
under the two-tailed form of the hypothesis, X=1gdfes
alpha , beta and gammaof 0.05. A multiplier of
X=1.65 is appropriate for a one-tailed hypotheses @b
level. Significance of difference from another moie
satisfied to the specified level if the specifiecbdal
(including null or full) does not lie in the conéidce
interval of the alternate model. Power is adeqtmattne
specified level if the alternate model does notirighe
confidence interval of the specified model. Figute
further illustrates the effectiveness of the 95%pieical
and theoretical confidence bounds in relation te th
M significance achievable at N=128 (K=5).

028 n 4

A 6 Exploration and Future Work
J\ ol The Bookmaker Informedness measure has been used
04 ;A N 4 extensively by the Al Group at Flinders over thst &
|V —s years, in particular in the PhD Theses and other
| CM publications of Trent Lewis (2003ab) relating to

08l s+t | AudioVisual Speech Recognition, and the publicatioh

“ — pt Sean Fitzgibbon (2007ab) relating to EEG/Brain
f,ﬁ;;ﬂ Computer Interface. Fitzgibbon was also the origina
— 2 author of the Matlab scripts that are available for

8- ::-cu [| calculating both the standard and Bookmaker siztist
— gCgM (see footnote on first page). The connection wittaP
11 was discovered by Richard Leibbrandt in the coofdgs

4l I I I I
0 20 40 60 80 100

PhD research in Syntactic and Semantic Language

Learning. We have also referred extensively to the
Figure 6. lllustration of significance and confiderce. equivalence of Bookmaker Informedness to ROC AUC, a
110Monte Carlo simulations with 11 stepped expected ysed standardly in Medicine, although AUC has thenf

Informedness levels (red line) with Bookmalestimatet  of an undemeaned probability, and B is a demeaned
Informedness (red dots), Markedness (green dot) and renormalized form.

Correlation (blue dot), with significance (p+1)aaated .

using G, X2, and Fisheestimates, and confidence bar "€ Informedness measure has thus proven its worth

shown for both the theoretical Informedness andth@ ~ across a wide range of disciplines, at least in its

and B=1 levels (parallel almost meeting at B=0Thje dichotomous form. A particular feature of the Lewisd
lower theoretical band is calculated twice, usiogb Fitzgibbon studies, is that they covered differeminbers
Clgs andClg,. Here K=4, N=16, X=1.96;=$=0.05. of classes (exercising the multi-class form of Buaker),

as well as a number of different noise and artefact
lower band), however our B=0 and B=1 confidenc&onditions. Both of these aspects of their worlant¢hat
intervals almost meet showing that we cannot djsish the traditional measures and derivatives of Recall,
intermediate B values other than B=0.5 which isginad. ~ Precision and Accuracy were useless for compatieg t
Viz. we can say that this data seems to be ran&srd.5) different runs and the different conditions, whilst
or informed (B>0.5), but cannot be specific abbetlevel Bookmaker gave clear unambiguous, easily interpteta
of informedness for this small N (except for B=D55). results which were contrasted with the traditional

) ) ) ) measures in these studies.

If there is a mismatch of the marginal weights feemwthe 5 5 2 ) ) )
respective prevalences and biases, this is taken The NeWX'ke, X km and x'kem: X'xs: X xm athxpM
contravene our assumption that Bookmaker statisties correlaf[lon statistics were developed heuristicalligh
calculated for the optimal assignment of classlabéhus aPproximative sketch proofs/arguments, and havg onl
we assume that any mismatch is one of evennessanrdy been investigated to date in toy contrived situestiand
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BMG Correlation is the appropriate measure, and
correspondingly we propose thékewm is the appropriate

¥? significance statistic. To explore these thoroydhla
matter for future research. However, in practiceenel to
recommend the use of Confidence Intervals as riited

in Figs 4 and 5, since these give a direct indicatf
power versus the confidence interval on the null
hypothesis, as well as power when used with conéide
intervals on an alternate hypothesis.

T \‘

1 Furthermore, when used on the empirical mean
(correlation, markedness or informedness), thelayarf
the interval with another system, and vice-versae g
direct indication of both significance and power thé
difference between them. If a system occurs in heerot
confidence interval it is not significantly differefrom
that system or hypothesis, and if it is it is sfgaintly
different. If its own confidence interval also @®
overlapping the alternate mean this mutual sigaifi® is
actually a reflection of statistical power at a
- complementary level. However, as with significatess,
PR it is important to avoid reading to avoid too munko
non-overlap of interval and mean (not of intervals)the
02k 1 actual probabilities of the hypotheses depends aiso
b unknown priors.

Thus whilst our understanding of Bookmaker and

04 -4 Markedness as performance measure is now quitaenatu
TBNC particularly in view of the clear relationships ixisting
g‘ measures exposed in this article, we do not regamnt
e pet | practice in relation to significance and confidgnoe
— indeed our present discussion, as having the sareédf
pii+t : h s
— pipHt maturity and a better understanding of the sigaifee

— k2 and confidence measures remains a matter for furthe

08 — €2 H . . . . . .
I work, including in particular, research into thelthdlass
gfg” application of the technique, and exploration oé th
1Ci asymmetry in degrees of freedom appropriatalpha
10 2‘0 4‘0 5‘0 5‘0 I andbeta , which does not seem to have been explored

hitherto. Nonetheless, based on pilot experimetfis,
dichotomousy’ke family of statistics seems to be more
reliable than the traditionaf and G statistics, and the

Inf d o dots). Marked dof dconfidence intervals seem to be more reliable bwdh. It
nformedness (red dots), Markedness (green dot) an is also important to recall that the marginal agstions

Correlation (blue dot), with significance (p+1)aahted ; i )
using &, X2 and Fisher estimates, and confidence band§nderlymg the both thg® and G statistics and the Fisher

) xact test are not actually valid for contingentiased on
shown for both the theoretical Informgdness andBthe a parameterized or learned system (as opposed to
and B=1 levels (parallel almost meeting at B=0T%)e

. - 5 - naturally occurring pre- and post-conditions) a® th
Iowzn?g?::“ﬁzlrga:g:d;’s ﬁﬂiggt‘f:i’gc;:g:g)glg k1 different tradeoffs and algorithms will reflect fifent

margins (biases).

Figure 7. lllustration of significance and confidere.
110Monte Carlo simulations with 11 stepped expected
Informedness levels (red line) with Bookmaker-estieal

It also remains to explore the relationship between
Informedness, Markedness, Evenness and the Detatmin
of Contingency in the general multiclass case. In

approaches, there has as yet been no no applitatimur particular, the determinant generalizes to multiple
multi-class experiments and no major body of Worglmensmns to give a vglur_ne of space that reprasibt
comparing new and conventional approaches fpverage of parameterlzatlpns that are mare raritlem .
significance. Just as Bookmaker (or DeltaP) ie thcontlngency matrix and its perverted forms (that is
normative rﬁeasure of accuracy for a system agaiGstd permutations of the classes or labels that make it
Standard, so i3 the proposed? significance statistic suboptimal or subchance). Maximizing the deterntiiign
for this rrywst co)::]mon situation. For the crosserale  Mecessary to maximize Informedness and Markedmeks a

cross-system comparison, where neither is normattiee hence . Correlat!on, and the normallzqtlon of the
determinant to give those measures as defined b3}

the Monte Carlo simulations in Figs 3 to 5. In jzattr,
whilst they work well in the dichotomous state, whthey
demonstrate a clear advantage ovgr traditional

Powers 21 Evaluation: From Precision, Recall and F-Factor

defines respective multiclass Evenness measurente Carlo simulations have been performed in dbatl
satisfying a generalization of (20-21). This aleen using all the variants discussed above. Violatihg t
definition needs to be characterized, and is tlaetform  strictly positive margin assumption causes NaNsifany
that should be used in equations 30 to 46. Théarkhip statistics, and for this reason this in enforcegéting 1s

to the discussed mean-based definitions remainiseto at the intersection of paired zero-margin rows@idmns,
explored, and they must at present be regarded @sarbitrarily for unpaired rows or columns. Anatheay
approximative. However, it is possible (and argyablof avoiding these NaN problems is to relax the
desirable) to instead of using Geometric Meansuived  integral/discreteness assumptions. Uniform mangie-f
above, to calculate Evenness as defined by thiistribution, discrete or real-valued, producesreater
combination of (20-22,42-43). It may be there is aerror distribution than the margin-constrainedrdistions.
simplified identity or a simple relationship witthe It is also possible to use so-called copula techesqto
Geometric Mean definition, but such simplificatidmsve reshape uniformly distributed random numbers tatesro
yet to be investigated. distribution. In addition Matlab’s directly calcudal
binornd  function has been used to simulate the binomial
distribution, as well as the absolute value of nioemal

. . distribution shifted by (plus) the binomial stardiar
Wh,'ISt the Bogkmaker measures are exact estimeftes dtviation. No noticeable difference has been olesbdue
varlquslprqbablll_tles, as expected values, theyrmans to relaxing the integral/discreteness assumptiomept

of Q|§tr|butlons |nf_|uenced not only by, the ”ndm,g’, for disappearance of the obvious banding and more
decision probability but the marginal and jointyeyaient extremes at low N, outside the recommnde
dlstrlbutlops of the contingent variables. _In depshg  minimum average count of 5 per cell for significaremd
these (_astlma}tes a rn_lmmum of assqmptlons haYe be@d’hfidence estimates to be valid. On the other hamd
made, including avoiding the assumption that thegina.  qte thathinornd  produced unexpectedly low means
are predetermined or thatAblas tracks prevalemebtrus g always severely underproduced before correction
it is arguable that therells no attractor at thpeeted _This leads to a higher discretization effect ands le
values produced as the independent product of mergi .anqomness, and hence overestimation of assoiation
probabilities. For th_e purposes oflMonte Carlo sanun,l The direct calculation over N events means it takd§
mgse haye t_)een implemented in Matlah? 6R12 using;ithes longer to compute and is impractical for Nthe
uniform distribution across the full contingencyol®  15nqe where the statistics are meaningful. Bineinv
mOF’e”'”g events hlttlng any cell with equal proﬂl@bln and related functions ultimately ug@mmaln to calculate

a discrete distribution with K1 degrees of freedom (given values and thus the copula technique is of reasenatier,

N is fixed). In practice, (pseudo-)random numbel M6t o raqits being comparable with those of absalotenal.
automatically set Krandom numbers so that they add

exactly to N, and setting®L cells and allowing the final Figures 2, 3, 5, 6 and 7 have thus all been based o
cell to be determined would give it o(K) times thandard pre-marginalized simulations with discretized abtl
deviation of the other cells. Thus another apprdade Nhormal distributions using post-processing as dised
approximately specify N and either leave the numifer above to ensure maintenance of all constraints(@ to
elements as it comes, or randomly increment oreieent 102 with expected value of N/K 2 & 2 and expected B
cells to bring it back to N, or ignore integer diteness Of 0/10 to 10/10, noting that the forced constrairdcess
constraints and renormalize by multiplication. Thises introduces additional randomness and that theivelat
the question of what other constraints we wantadtain, amount of correction required may be expected toedse
e.g. that cells are integral and non-negative, et With K.

margins are integral and strictly positive.

7 Monte Carlo Simulation

An alternate approach is to separately determiree tf? Conclusions

prediction bias and real prevalence margins, usingThe system of relationships we have discovered is
uniform distribution, and then using conventionabmazingly elegant. From a contingency matrix inntaar
distributions around the expected value of each i€ele  reduced form (as probabilities), we can construath b
believe the appropriate distribution is normal, tbe dichotomous and mutually exclusive multiclass stiass
central limit applies, as is conventionally assunrethe that correspond to debiased versions of Recall and
theory of y* significance as well as the theory ofPrecision (28,29). These may be related to the Aner
confidence intervals, then a normal distributiom d# the Curve and distance from (1,1) in the Recaled&®OC
used. However, if as in the previous model we emés analysis, and it's dual Precision-based method.rf lae
events that are allocated to cells with some pritihab further insightful relationships with Matthews Celation,
then a binomial distribution is appropriate, notihgt this  with the determinant of either form of the matriXT(P or

is a discrete distribution and that for reasonddnige N it dtp ), and the Area of the Triangle defined by the ROC
approaches the normal distribution, and indeedstime of point and the chance line, or equivalently the Askthe
independent events meets the definition of the mbrmParallelogram or Trapezoid defined by its pervefoems.
distribution except that discretization will cawdsviation.

! The author has since corrected this initializatiog in Matlab.
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Also useful is the direct relationship of the threeontribution of Richard Leibbrandt in drawing to my
Bookmaker  goodness  measures  (Informednesattention the connection with DeltaP.

Markedness and Matthews Correlation) with bothdziach

(biased) single variable significance tests as waslthe References
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