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Abstract 

Commonly used evaluation measures including Recall, 
Precision, F-Factor and Rand Accuracy are biased and 
should not be used without clear understanding of the 
biases, and corresponding identification of chance or base 
case levels of the statistic. Using these measures a system 
that performs worse in the objective sense of Informedness, 
can appear to perform better under any of these commonly 
used measures. We discuss several concepts and measures 
that reflect the probability that prediction is informed 
versus chance. Informedness and introduce Markedness as 
a dual measure for the probability that prediction is marked 
versus chance. Finally we demonstrate elegant connections 
between the concepts of Informedness, Markedness, 
Correlation and Significance as well as their intuitive 
relationships with Recall and Precision, and outline the 
extension from the dichotomous case to the general 
multi-class case. . 

Keywords:  Recall, Precision, F-Factor, Rand Accuracy, 
Cohen Kappa, Chi-Squared Significance, Log-Likelihood 
Significance, Matthews Correlation, Pearson Correlation, 
Evenness, Bookmaker Informedness and Markedness 

1 Introduction 

A common but poorly motivated way of evaluating results 
of Machine Learning experiments is using Recall, 
Precision and F-factor.  These measures are named for 
their origin in Information Retrieval and present specific 
biases, namely that they ignore performance in correctly 
handling negative examples, they propagate the 
underlying marginal Prevalences and biases, and they fail 
to take account the chance level performance. In the 
Medical Sciences, Receiver Operating Characteristics 

                                                        

This is an extension of papers presented at the 2003 International 
Cognitive Science Conference and the 2007 Human 
Communication Science SummerFest. Both papers, along with 
scripts/spreadsheets to calculate many of the statistics discussed, 
may be found at http://david.wardpowers.info/BM/index.htm.   

(ROC) analysis has been borrowed from Signal Processing 
to become a standard for evaluation and standard setting, 
comparing True Positive Rate and False Positive Rate.  In 
the Behavioural Sciences, Specificity and Sensitivity, are 
commonly used. Alternate techniques, such as Rand 
Accuracy and Cohen Kappa, have some advantages but 
are nonetheless still biased measures. We will recapitulate 
some of the literature relating to the problems with these 
measures, as well as considering a number of other 
techniques that have been introduced and argued within 
each of these fields, aiming/claiming to address the 
problems with these simplistic measures. 

This paper recapitulates and re-examines the relationships 
between these various measures, develops new insights 
into the problem of measuring the effectiveness of an 
empirical decision system or a scientific experiment, 
analyzing and introducing new probabilistic and 
information theoretic measures that overcome the 
problems with Recall, Precision and their derivatives. 

2 The Binary Case  

It is common to introduce the various measures in the 
context of a dichotomous binary classification problem, 
where the labels are by convention + and − and the 
predictions of a classifier are summarized in a four cell 
contingency table. This contingency table may be 
expressed using raw counts of the number of times each 
predicted label is associated with each real class, or may be 
expressed in relative terms.  Cell and margin labels may be 
formal probability expressions, may derive cell 
expressions from margin labels or vice-versa, may use 
alphabetic constant labels a, b, c, d  or A, B, C, D , 
or may use acronyms for the generic terms for True and 
False, Real and Predicted Positives and Negatives.   Often 
UPPER CASE is used where the values are counts, and 
lower case letters where the values are probabilities or 
proportions relative to N or the marginal probabilities – we 
will adopt this convention throughout this paper (always 
written in typewriter font ), and in addition will use 
Mixed Case (in the normal text font) for popular 
nomenclature that may or may not correspond directly to 
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one of our formal systematic names. True and False 
Positives (TP/FP ) refer to the number of Predicted 
Positives that were correct/incorrect, and similarly for 
True and False Negatives (TN/FN), and these four cells 
sum to N. On the other hand tp, fp, fn, tn  and rp, 
rn and pp, pn  refer to the joint and marginal 
probabilities, and the four contingency cells and the two 
pairs of marginal probabilities each sum to 1. We will 
attach other popular names to some of these probabilities 
in due course. 

We thus make the specific assumptions that we are 
predicting and assessing a single condition that is either 
positive or negative (dichotomous), that we have one 
predicting model, and one gold standard labeling. Unless 
otherwise noted we will also for simplicity assume that the 
contingency is non-trivial in the sense that both positive 
and negative states of both predicted and real conditions 
occur, so that none of the marginal sums or probabilities is 
zero.  

We illustrate in Table 1 the general form of a binary 
contingency table using both the traditional alphabetic 
notation and the directly interpretable systematic approach. 
Both definitions and derivations in this paper are made 
relative to these labellings, although English terms (e.g. 
from Information Retrieval) will also be introduced for 
various ratios and probabilities. The green positive 
diagonal represents correct predictions, and the pink 
negative diagonal incorrect predictions. The predictions of 
the contingency table may be the predictions of a theory, 
of some computational rule or system (e.g. an Expert 
System or a Neural Network), or may simply be a direct 
measurement, a calculated metric, or a latent condition, 
symptom or marker.  We will refer generically to "the 
model" as the source of the predicted labels, and "the 
population" or "the world" as the source of the real 
conditions. We are interested in understanding to what 
extent the model "informs" predictions about the 
world/population, and the world/population "marks" 
conditions in the model. 

2.1 Recall & Precision, Sensitivity & Specificity 

Recall or Sensitivity (as it is called in Psychology) is the 
proportion of Real Positive cases that are correctly 
Predicted Positive. This measures the Coverage of the 
Real Positive cases by the +P (Predicted Positive) rule. Its 
desirable feature is that it reflects how many of the relevant 
cases the +P rule picks up. It tends not to be very highly 
valued in Information Retrieval (on the assumptions that 
there are many relevant documents, that it doesn't really 

matter which subset we find, that we can't know anything 
about the relevance of documents that aren't returned). 
Recall tends to be neglected or averaged away in Machine 
Learning and Computational Linguistics (where the focus 
is on how confident we can be in the rule or classifier). 
However, in a Computational Linguistics/Machine 
Translation context Recall has been shown to have a major 
weight in predicting the success of Word Alignment 
(Fraser & Marcu, 2007). In a Medical context Recall is 
moreover regarded as primary, as the aim is to identify all 
Real Positive cases, and it is also one of the legs on which 
ROC analysis stands. In this context it is referred to as 
True Positive Rate (tpr ). Recall is defined, with its 
various common appellations, by equation (1): 

Recall   =    Sensitivity = tpr = tp/rp   
       =  TP / RP = A /(A+C)  (1) 

Conversely, Precision or Confidence (as it is called in Data 
Mining) denotes the proportion of Predicted Positive cases 
that are correctly Real Positives. This is what Machine 
Learning, Data Mining and Information Retrieval focus on, 
but it is totally ignored in ROC analysis. It can however 
analogously be called True Positive Accuracy (tpa ), 
being a measure of accuracy of Predicted Positives in 
contrast with the rate of discovery of Real Positives 
(tpr ).  Precision is defined in (2): 

Precision =   Confidence = tpa = tp/pp  
  =  TP / PP =  A /(A+B)   (2) 

These two measures and their combinations focus only on 
the positive examples and predictions, although between 
them they capture some information about the rates and 
kinds of errors made.  However, neither of them captures 
any information about how well the model handles 
negative cases.  Recall relates only to the +R column and 
Precision only to the +P row.  Neither of these takes into 
account the number of True Negatives.  This also applies 
to their Arithmetic, Geometric and Harmonic Means: A, G 
and F=G2/A (the F-factor or F-measure). Note that the 
F-measure effectively references the True Positives to the 
Arithmetic Mean of Predicted Positives and Real Positives, 
being a constructed rate normalized to an idealized value. 
The Geometric Mean of Recall and Precision (G-measure) 
effectively normalizes TP to the Geometric Mean of 
Predicted Positives and Real Positives, and its Information 
content corresponds to the Arithmetic Mean of the 
Information represented by Recall and Precision. 

In fact, there is in principle nothing special about the 
Positive case, and we can define Inverse statistics in terms 
of the Inverse problem in which we interchange positive 

 +R −R     +R −R   

+P tp fp pp  +P A B A+B 

−P  fn tn pn  −P  C D C+D 

 rp rn 1    A+C B+D N 

Table 1. Systematic and traditional notations in a binary contingency table. Colour coding indicates correct 
(green) and incorrect (pink) rates or counts in the contingency table. 
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and negative and are predicting the opposite case.  Inverse 
Recall or Specificity is thus the proportion of Real 
Negative cases that are correctly Predicted Negative (3), 
and is also known as the True Negative Rate 
(tnr ).  Conversely, Inverse Precision is the proportion of 
Predicted Negative cases that are indeed Real Negatives 
(4), and can also be called True Negative Accuracy (tna ): 

Inverse Recall  = tnr  = tn/rn  
   = TN/RN  = D/(B+D)  (3) 
Inverse Precision = tna  = tn/pn  
   = TN/PN  = D/(C+D)  (4) 

Rand Accuracy explicitly takes into account the 
classification of negatives, and is expressible (5) both as a 
weighted average of Precision and Inverse Precision and 
as a weighted average of Recall and Inverse Recall. 
Conversely, the Jaccard or Tanimoto similarity coefficient 
explicitly ignores the correct classification of negatives 
(TN): 

Accuracy  = tea = ter = tp+tn  
  = rp*tpr+rn*tnr  
  = pp*tpa+pn*tna = (A+D)/N  (5) 
Jaccard  = tp/(tp+fn+fp) = TP/(N-TN)  
  = A/(A+B+C) = A/(N-D)  (6) 

Each of the above also has a complementary form defining 
an error rate, of which some have specific names and 
importance: Fallout or False Positive Rate (fpr ) are the 
proportion of Real Negatives that occur as Predicted 
Positive (ring-ins); Miss Rate or False Negative Rate (fnr ) 
are the proportion of Real Positives that are Predicted 
Negatives (false-drops). False Positive Rate is the second 
of the legs on which ROC analysis is based. 

Fallout  = fpr  = fp/rp  
  = FP/RP  = B/(B+D)     (7) 
Miss Rate  = fnr  = fn/rn  
  = FN/RN  = C/(A+C)   (8) 

Note that FN and FP are sometimes referred to as Type I 
and Type II Errors, and the rates fn  and fp  as alpha and 
beta, respectively – referring to falsely rejecting or 
accepting a hypothesis.  More correctly, these terms apply 
specifically to the meta-level problem discussed later of 
whether the precise pattern of counts (not rates) in the 
contingency table fit the null hypothesis of random 
distribution rather than reflecting the effect of some 
alternative hypothesis (which is not in general the one 
represented by either +P -> +R or −P -> −R or both). 

2.2 Prevalence, Bias, Cost & Skew 

We now turn our attention to various forms of bias that 
detract from the utility of all of the above surface measures 
(Reeker, 2000). We will first note that rp  represents the 
Prevalence of positive cases, RP/N, and is assumed to be a 
property of the population of interest – it may be constant, 
or it may vary across subpopulations, but is regarded here 
as not being under the control of the experimenter.  By 
contrast, pp represents the (label) Bias of the model 
(Lafferty, McCallum and Pereira, 2002), the tendency of 
the model to output positive labels, PP/N, and is directly 

under the control of the experimenter, who can change the 
model by changing the theory or algorithm, or some 
parameter or threshold, to better fit the world/population 
being modeled.  Note that F-factor effectively references 
tp  (probability or proportion of True Positives) to the 
Arithmetic Mean of Bias and Prevalence.  A common rule 
of thumb, or even a characteristic of some algorithms, is to 
parameterize a model so that Prevalence = Bias, viz.  
rp = pp . Corollaries of this setting are Recall = Precision 
(= A = G = F) , Inverse Recall = Inverse Precision and 
Fallout = Miss Rate. 

Alternate characterizations of Prevalence are in terms of 
Odds (Powers, 2003) or Skew (Flach, 2003), being the 
Class Ratio c s = rn/rp , recalling that by definition 
rp+rn = 1  and RN+RP = N .  If the distribution is highly 
skewed, typically there are many more negative cases than 
positive, this means the number of errors due to poor 
Inverse Recall will be much greater than the number of 
errors due to poor Recall. Given the cost of both False 
Positives and False Negatives is equal, individually, the 
overall component of the total cost due to False Positives 
(as Negatives) will be much greater at any significant level 
of chance performance, due to the higher Prevalence of 
Real Negatives.  

Note that the normalized binary contingency table with 
unspecified margins has three degrees of freedom – setting 
any three non−Redundant ratios determines the rest 
(setting any count supplies the remaining information to 
recover the original table of counts with its four degrees of 
freedom). In particular, Recall, Inverse Recall and 
Prevalence, or equivalently tpr, fpr and c s, suffice to 
determine all ratios and measures derivable from the 
normalized contingency table, but N is also required to 
determine significance. As another case of specific interest, 
Precision, Inverse Precision and Bias, in combination, 
suffice to determine all ratios or measures, although we 
will show later that an alternate characterization of 
Prevalence and Bias in terms of Evenness allows for even 
simpler relationships to be exposed. 

We can also take into account a differential value for 
positives (cp ) and negatives (cn ) – this can be applied to 
errors as a cost (loss or debit) and/or to correct cases as a 
gain (profit or credit), and can be combined into a single 
Cost Ratio c v = cn/cp . Note that the value and skew 
determined costs have similar effects, and may be 
multiplied to produce a single skew-like cost factor  
c = c vc s. Formulations of measures that are expressed 
using tpr, fpr and c s may be made cost-sensitive by using  
c = c vc s in place of c = c s, or can be made 
skew/cost-insensitive by using c = 1  (Flach, 2003). 

2.3 ROC and PN Analyses  

Flach (2003) has highlighted the utility of ROC analysis to 
the Machine Learning community, and characterized the 
skew sensitivity of many measures in that context, 
utilizing the ROC format to give geometric insights into 
the nature of the measures and their sensitivity to skew. 
Fürnkranz & Flach (2005) have further elaborated this 
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analysis, extending it to the unnormalized PN variant of 
ROC, and targeting their analysis specifically to rule 
learning. We will not examine the advantages of ROC 
analysis here, but will briefly explain the principles and 
recapitulate some of the results. 

ROC analysis plots the rate tpr  against the rate fpr , 
whilst PN plots the unnormalized TP against FP. This 
difference in normalization only changes the scales and 
gradients, and we will deal only with the normalized form 
of ROC analysis. A perfect classifier will score in the top 
left hand corner (fpr=0,tpr=100% ). A worst case 
classifier will score in the bottom right hand corner 
(fpr=100%,tpr=0 ).  A random classifier would be 
expected to score somewhere along the positive diagonal 
(tpr=fpr ) since the model will throw up positive and 
negative examples at the same rate (relative to their 
populations – these are Recall-like scales: tpr =  Recall, 
1-fpr =  Inverse Recall).  For the negative diagonal 
(tpr+c*fpr=1 ) corresponds to matching Bias to 
Prevalence for a skew of c. 

The ROC plot allows us to compare classifiers (models 
and/or parameterizations) and choose the one that is 
closest to (0,1) and furtherest from tpr=fpr  in some 
sense.  These conditions for choosing the optimal 
parameterization or model are not identical, and in fact the 
most common condition is to minimize the area under the 
curve (AUC), which for a single parameterization of a 
model is defined by a single point and the segments 
connecting it to (0,0) and (1,1).  For a parameterized 
model it will be a monotonic function consisting of a 

sequence of segments from (0,0) to (1,1).  A particular 
cost model and/or accuracy measure defines an isocost 
gradient, which for a skew and cost insensitive model will 
be c=1 , and hence another common approach is to choose 
a tangent point on the highest isocost line that touches the 
curve.  The simple condition of choosing the point on the 
curve nearest the optimum point (0,1) is not commonly 
used, but this distance to (0,1) is given by √[(- fpr) 2 + 
(1-tpr) 2] , and minimizing this amounts to minimizing 
the sum of squared normalized error, fpr 2+fnr 2. 

A ROC curve with concavities can also be locally 
interpolated to produce a smoothed model following the 
convex hull of the original ROC curve.  It is even possible 
to locally invert across the convex hull to repair 
concavities, but this may overfit and thus not generalize to 
unseen data. Such repairs can lead to selecting an 
improved model, and the ROC curve can also be used to 
return a model to changing Prevalence and costs. The area 
under such a multipoint curve is thus of some value, but 
the optimum in practice is the area under the simple 
trapezoid defined by the model: 

AUC =  (tpr-fpr+1)/2 
 = (tpr+tnr)/2 
 = 1 – (fpr+fnr)/2      (9) 

For the cost and skew insensitive case, with c=1 , 
maximizing AUC is thus equivalent to maximizing 
tpr-fpr or minimizing a sum of (absolute) normalized 
error fpr+fnr . The chance line corresponds to 
tpr-fpr =0, and parallel isocost lines for c=1  have the 
form tpr-fpr =k. The highest isocost line also 
maximizes tpr-fpr  and AUC so that these two 
approaches are equivalent.  Minimizing a sum of squared 
normalized error, fpr 2+fnr 2

,  corresponds to a 
Euclidean distance minimization heuristic that is 
equivalent only under appropriate constraints, e.g. 
fpr=fnr , or equivalently, Bias=Prevalence, noting that 
all cells are non-negative by construction. 

We now summarize relationships between the various 
candidate accuracy measures as rewritten in terms of tpr, 
fpr  and the skew, c (Flach,2003), as well in terms of 
Recall, Bias and Prevalence: 

Accuracy = [tpr+c·(1-fpr)]/[1+c]  
  =   2·Recall·Prev+1- Bias−Prev  (10) 
Precision  = tpr/[tpr+c·fpr]   
  =   Recall·Prev/Bias     (11) 
F-Measure  =  2·tpr/[tpr+c·fpr+1]  
  =   2·Recall·Prev/[Bias+Prev]   (12) 
WRacc  = 4c·[tpr-fpr]/[1+c]2   
  = 4·[ Recall- Bias]·Prev     (13) 

The last measure, Weighted Relative Accuracy, was 
defined by Lavrac, Flach & Zupan (1999) to subtract off 
the component of the True Positive score that is 
attributable to chance and rescale to the range ±1.  Note 
that maximizing WRacc is equivalent to maximizing AUC 
or tpr-fpr = 2·AUC−1, as c is constant.  Thus WRAcc 
is an unbiased accuracy measure, and the skew-insensitive 
form of WRAcc, with c=1 , is precisely tpr-fpr .  Each 

 

 

 

 

 

 

 

 

Figure 1. Illustration of ROC Analysis. The main 
diagonal represents chance with parallel isocost lines 
representing equal cost-performance. Points above the 

diagonal represent performance better than chance, 
those below worse than chance. For a single good 
(green) system, AUC is the area under the curve 

(trapezoid between green line and [0,1] on the x-axis).  
The perverse (red) system shown is the same (good) 

system applied to a problem with class labels reversed. 
The other perverse system with predictions rather than 

labels reversed (not shown) forms a parallelogram. 
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of the other measures (10−12) shows a bias in that it can 
not be maximized independent of skew, although 
skew-insensitive versions can be defined by setting c=1 . 
The recasting of Accuracy, Precision and F-Measure in 
terms of Recall makes clear how all of these vary only in 
terms of the way they are affected by Prevalence and Bias. 

Prevalence is regarded as a constant of the target condition 
or data set (and c  = [1− Prev]/ Prev), whilst 
parameterizing or selecting a model can be viewed in 
terms of trading off tpr and fpr as in ROC analysis, or 
equivalently as controlling the relative number of positive 
and negative predictions, namely the Bias, in order to 
maximize a particular accuracy measure (Recall, Precision, 
F-Measure, Rand Accuracy and AUC). Note that for a 
given Recall level, the other measures (10−13) all decrease 
with increasing Bias towards positive predictions. 

2.4 DeltaP, Informedness and Markedness 

Powers (2003) also derived an unbiased accuracy measure 
to avoid the bias of Recall, Precision and Accuracy due to 
population Prevalence and label bias. The Bookmaker 
algorithm costs wins and losses in the same way a fair 
bookmaker would set prices based on the odds.  Powers 
then defines the concept of Informedness which represents 
the 'edge' a punter has in making his bet, as evidenced and 
quantified by his winnings.  Fair pricing based on correct 
odds should be zero sum – that is, guessing will leave you 
with nothing in the long run, whilst a punter with certain 
knowledge will win every time.  Informedness is the 
probability that a punter is making an informed bet and is 
explained in terms of the proportion of the time the edge 
works out versus ends up being pure guesswork.  Powers 
defined Bookmaker Informedness for the general, K-label, 
case, but we will defer discussion of the general case for 
now and present a simplified formulation of Informedness, 
as well as the complementary concept of Markedness. 

Definition 1  

Informedness quantifies how informed a predictor is 
for the specified condition, and specifies the 
probability that a prediction is informed in relation to 
the condition (versus chance). 

Definition 2  

Markedness quantifies how marked a condition is for 
the specified predictor, and specifies the probability 
that a condition is marked by the predictor (versus 
chance). 

These definitions are aligned with the psychological and 
linguistic uses of the terms condition and marker. The 
condition represents the experimental outcome we are 
trying to determine by indirect means.  A marker or 
predictor (cf. biomarker or neuromarker) represents the 
indicator we are using to determine the outcome.  There is 
no implication of causality – that is something we will 
address later. However there are two possible directions of 
implication we will address now.  Detection of the 
predictor may reliably predict the outcome, with or 

without the occurrence of a specific outcome condition 
reliably triggering the predictor. 

For the binary case we have 

Informedness = Recall + Inverse Recall – 1 
  = tpr-fpr = 1-fnr-fpr   (14) 
Markedness = Precision + Inverse Precision – 1 
  = tpa-fna = 1-fpa-fna   (15) 

We noted above that maximizing AUC or the unbiased 
WRAcc measure effectively maximized tpr-fpr and indeed 
WRAcc reduced to this in the skew independent 
case.  This is not surprising given both Powers and Flach 
set out to produce an unbiased measure, and the linear 
definition of Informedness will define a unique linear 
form.  Note that while Informedness is a deep measure of 
how consistently the Predictor predicts the Outcome by 
combining surface measures about what proportion of 
Outcomes are correctly predicted, Markedness is a deep 
measure of how consistently the Outcome has the 
Predictor as a Marker by combining surface measures 
about what proportion of Predictions are correct. 

In the Psychology literature, Markedness is known as 
DeltaP and is empirically a good predictor of human 
associative judgements – that is it seems we develop 
associative relationships between a predictor and an 
outcome when DeltaP is high, and this is true even when 
multiple predictors are in competition (Shanks, 
1995).  Perruchet and Peereman (2004), in the context of 
experiments on information use in syllable processing, 
note that Schanks sees DeltaP as "the normative measure 
of contingency", but propose a complementary, backward, 
additional measure of strength of association, DeltaP' aka 
Informedness.  Perruchet and Peeremant also note the 
analog of DeltaP to regression coefficient, and that the 
Geometric Mean of the two measures is a dichotomous 
form of the Pearson correlation coefficient, the Matthews' 
Correlation Coefficient, which is appropriate unless a 
continuous scale is being measured dicotomously in which 
case a Tetrachoric Correlation estimate would be 
appropriate, as discussed by Bonnet and Price (2005). 

2.5 Causality, Correlation and Regression  

In a linear regression of two variables, we seek to predict 
one variable, y , as a linear combination of the other, x, 
finding a line of best fit in the sense of minimizing the sum 
of squared error (in y). The equation of fit has the form 

y  = y 0 + r x·x     where  
r x  = [n ∑x·y- ∑x· ∑y]/[n ∑x2-∑x· ∑x] (16) 

Substituting in counts from the contingency table, for the 
regression of predicting +R (1) versus −R (0) given +P (1) 
versus −P (0), we obtain this gradient of best fit 
(minimizing the error in the real values R): 

r P = [AD – BC] / [(A+B)(C+D)] 
 =  A/(A+B) – C/(C+D) 
 =   DeltaP = Markedness     (17) 
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Conversely, we can find the regression coefficient for 
predicting P from R (minimizing the error in the 
predictions P):  

r R = [AD – BC] / [(A+C)(B+D)]  
 =  A/(A+C) – B/(B+D)   
 =   DeltaP' = Informedness     (18) 

Finally we see that the Matthews correlation, a 
contingency matrix method of calculating the Pearson 
product-moment correlation coefficient, ρ, is defined by 

r G = [AD – BC] / √[(A+C)(B+D)(A+B)(C+D)]  
 =  Correlation = ±√[Informedness·Markedness] (19)  

Given the regressions find the same line of best fit, these 
gradients should be reciprocal, defining a perfect 
Correlation of 1. However, both Informedness and 
Markedness are probabilities with an upper bound of 1, so 
perfect correlation requires perfect regression. The 
squared correlation is a coefficient of proportionality 
indicating the proportion of the variance in R that is 
explained by P, and is traditionally also interpreted as a 
probability. We can now interpret it either as the joint 
probability that P informs R and R marks P, given that the 
two directions of predictability are independent, or as the 
probability that the variance is (causally) explained 
reciprocally.  The sign of the Correlation will be the same 
as the sign of Informedness and Markedness and indicates 
whether a correct or perverse usage of the information has 
been made – take note in interpreting the final part of (19). 

Psychologists traditionally explain DeltaP in terms of 
causal prediction, but it is important to note that the 
direction of stronger prediction is not necessarily the 
direction of causality, and the fallacy of abductive 
reasoning is that the truth of A � B does not in general 
have any bearing on the truth of B � A.  

If Pi is one of several independent possible causes of R, 
Pi � R is strong, but R � Pi is in general weak for any 
specific Pi. If Pi is one of several necessary contributing 
factors to R, Pi � R is weak for any single Pi, but R � 
Pi is strong. The directions of the implication are thus not 
in general dependent. 

In terms of the regression to fit R from P, since there are 
only two correct points and two error points, and errors are 
calculated in the vertical (R) direction only, all errors 
contribute equally to tilting the regression down from the 
ideal line of fit. This Markedness regression thus provides 
information about the consistency of the Outcome in terms 
of having the Predictor as a Marker – the errors measured 
from the Outcome R relate to the failure of the Marker P 
to be present.  

We can gain further insight into the nature of these 
regression and correlation coefficients by reducing the top 
and bottom of each expression to probabilities (dividing by 
N2, noting that the original contingency counts sum to N, 
and the joint probabilities after reduction sum to 1). The 
numerator is the determinant of the contingency matrix, 
and common across all three coefficients, reducing to dtp , 
whilst the reduced denominator of the regression 

coefficients depends only on the Prevalence or Bias of the 
base variates. The regression coefficients, Bookmaker 
Informedness (B) and Markedness (M), may thus be 
re-expressed in terms of Precision (Prec) or Recall, along 
with Bias and Prevalence (Prev) or their inverses (I-):  

M   =  dtp  / [Bias · (1- Bias)]  
 =  dtp / BiasG2  = dtp / EvennessP  
 = [ Precision – Prevalence] /  IBias  (20) 

B   =  dtp  / [Prevalence · (1−Prevalence)]  
 =  dtp / PrevG2 = dtp / EvennessR  
 = [ Recall – Bias] /  IPrev 
 =  Recall – Fallout  
 =  Recall + IRecall – 1 
 =  Sensitivity + Specificity – 1 
 =   (LR–1) · (1–Specificity) 
 =   (1–NLR) · Specificity 
 =   (LR –1) · (1–NLR) /  (LR–NLR)  (21) 

In the medical and behavioural sciences, the Likelihood 
Ratio is LR=Sensitivity/[1–Specificity],  and the Negative 
Likelihood Ratio is NLR=Specificity/[1 –Sensitivity]. For 
non-negative B, LR>1>NLR, with 1 as the chance case. 
We also express Informedness in these terms in (21). 

The Matthews/Pearson correlation is expressed in reduced 
form as the Geometric Mean of Bookmaker Informedness 
and Markedness, abbreviating their product as BookMark 
(BM) and recalling that it is BookMark that acts as a 
probability-like coefficient of determination, not its root, 
the Geometric Mean (BookMarkG or BMG): 

BMG =  dtp  / √[Prev · (1−Prev) · Bias · (1- Bias)]  
 =  dtp / [ PrevG · BiasG]  
 =  dtp / EvennessG 
 =  √[(Recall−Bias)·(Prec−Prev)]/(IPrev·IBias) (22)  

These equations clearly indicate how the Bookmaker 
coefficients of regression and correlation depend only on 
the proportion of True Positives and the Prevalence and 
Bias applicable to the respective variables.  Furthermore, 
Prev · Bias represents the Expected proportion of True 
Positives (etp ) relative to N, showing that the coefficients 
each represent the proportion of Delta True Positives (the 
deviation from expectation, dtp=tp-etp ) renormalized 
in different ways to give different probabilities. Equations 
(20-22) illustrate this, showing that these coefficients 
depend only on dtp  and either Prevalence, Bias or their 
combination.  Note that for a particular dtp  these 
coefficients are minimized when the Prevalence and/or 
Bias are at the evenly biased 0.5 level, however in a 
learning or parameterization context changing the 
Prevalence or Bias will in general change both tp  and 
etp , and hence can change dtp . 

It is also worth considering further the relationship of the 
denominators to the Geometric Means, PrevG of 
Prevalence and Inverse Prevalence (IPrev = 1−Prev is 
Prevalence of Real Negatives) and BiasG of Bias and 
Inverse Bias (IBias = 1−Bias  is bias to Predicted 
Negatives). These Geometric Means represent the 
Evenness of Real classes (EvennessR = PrevG2) and 
Predicted labels (EvennessP = BiasG2). We also introduce 
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the concept of Global Evenness as the Geometric Mean of 
these two natural kinds of Evenness, EvennessG.  From 
this formulation we can see that for a given relative delta 
of true positive prediction above expectation (dtp ), the 
correlation is at minimum when predictions and outcomes 
are both evenly distributed (√EvennessG = √EvennessR = 
√EvennessP = Prev = Bias = 0.5), and Markedness and 
Bookmaker are individually minimal when Bias resp. 
Prevalence are evenly distributed (viz. Bias resp. Prev = 
0.5). This suggests that setting Learner Bias (and 
regularized, cost-weighted or subsampled Prevalence) to 
0.5, as sometimes performed in Artificial Neural Network 
training is in fact inappropriate on theoretical grounds, as 
has Previously been shown both empirically and based on 
Bayesian principles – rather it is best to use Learner Bias = 
Natural Prevalence which is in general much less than 0.5 
(Lisboa and Wong, 2000).  

Note that in the above equations (20-22) the denominator 
is always strictly positive since we have occurrences and 
predictions of both Positives and Negatives by earlier 
assumption, but we note that if in violation of this 
constraint we have a degenerate case in which there is 
nothing to predict or we make no effective prediction, then 
tp=etp  and dtp=0 , and all the above regression and 
correlation coefficients are defined in the limit 
approaching zero.  Thus the coefficients are zero if and 
only if dtp  is zero, and they have the same sign as dtp  
otherwise. Assuming that we are using the model the right 
way round, then dtp , B and M are non-negative, and 
BMG is similarly non-negative as expected. If the model is 
the wrong way round, then dtp , B, M and BMG can 
indicate this by expressing below chance performance, 
negative regressions and negative correlation, and we can 
reverse the sense of P to correct this.  

The absolute value of the determinant of the contingency 
matrix, dp = dtp , in these probability formulae (20-22), 
also represents the sum of absolute deviations from the 
expectation represented by any individual cell and hence 
2dp=2DP/N is  the total absolute relative error versus 
the null hypothesis. Additionally it has a geometric 
interpretation as the area of a trapezoid in PN-space, the 
unnormalized variant of ROC (Fürnkranz & Flach, 2005).  

We already observed that in (normalized) ROC analysis, 
Informedness is twice the triangular area between a 
positively informed system and the chance line, and it thus 
corresponds to the area of the trapezoid defined by a 
system (assumed to perform no worse than chance), and 
any of its perversions (interchanging prediction labels but 
not the real classes, or vice-versa, so as to derive a system 
that performs no better than chance), and the endpoints of 
the chance line (the trivial cases in which the system labels 
all cases true or conversely all are labelled false). Such a 
kite-shaped area is delimited by the dotted (system) and 
dashed (perversion) lines in Fig. 1 (interchanging class 
labels), but the alternate parallelogram (interchanging 
prediction labels) is not shown. The Informedness of a 
perverted system is the negation of the Informedness of the 
correctly polarized system. 

We now also express the Informedness and Markedness 
forms of DeltaP in terms of deviations from expected 
values along with the Harmonic mean of the marginal 
cardinalities of the Real classes or Predicted labels 
respectively, defining DP, DELTAP, RH, PH  and 
related forms in terms of their N−Relative probabilistic 
forms defined as follows:  

etp  = rp · pp; etn = rn  · pn    (23) 

dp  = tp – etp = dtp  
 = -dtn = -(tn – etn)  
deltap = dtp – dtn = 2dp               (24)  

rh = 2rp · rn / [rp+rn] 
ph = 2pp · pn / [pp+pn]                                     (25)  

DeltaP' or Bookmaker Informedness may now be 
expressed in terms of deltap  and rh , and DeltaP or 
Markedness analogously in terms of deltap  and ph :  

B = DeltaP' = [etp+dtp]/rp – [efp-dtp]/rn   
            = etp/rp – efp/rn + 2dtp/rh  
            = 2dp/rh = deltap/rh    (26)  

M = DeltaP = 2dp/ph = deltap/ph    (27)  

These Harmonic relationships connect directly with the 
Previous Geometric relationships by observing that 
ArithmeticMean = GeometricMean2/HarmonicMean (0.5 
for marginal rates and N/2 for marginal counts). The use of 
GeometricMean is generally preferred as an estimate of 
central tendency that more accurately estimates the mode 
for skewed (e.g. Poisson) data, and as the central limit of 
the family of Lp based averages (note that the Geometric 
Mean is the Geometric Mean of the Harmonic and 
Arithmetic Means).  

2.6 Effect of Bias & Prev on Recall & Precision  

The final form of the equations (20-22) cancels out the 
common Bias and Prevalence (Prev) terms, converting tp  
to tpr  (Recall) or tpa  (Precision). We now recast the 
Bookmaker Informedness and Markedness equations to 
show Recall and Precision as subject (23-24), in order to 
explore the affect of Bias and Prevalence on Recall and 
Precision, as well as clarify the relationship of Bookmaker 
and Markedness to these ubiquitous and iniquitous 
measures. 

Recall   = Bookmaker (1−Prevalence) + Bias  
Bookmaker = (Recall-Bias) / (1−Prevalence)   (28) 

Precision  = Markedness (1-Bias) + Prevalence  
Markedness  = (Precision−Prev) / (1-Bias)  (29) 

Bookmaker and Markedness are unbiased estimators of 
above chance performance (relative to respectively the 
predicting conditions or the predicted markers). Equations 
(23-24) clearly show the nature of the bias introduced by 
both Label Bias and Class Prevalence.  If operating at 
chance level, both Bookmaker and Markedness will be 
zero, and Recall, Precision, and derivatives such as the 
F-measure, will merely reflect the biases.  Note that 
increasing Bias or decreasing Prevalence increases Recall  
and decreases Precision, for a constant level of unbiased 
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performance. We can more specifically see that the 
regression coefficient for the prediction of Recall from 
Prevalence is −Bookmaker and from Bias is +1, and 
similarly the regression coefficient for the prediction of 
Precision from Bias is −Markedness and from Prevalence 
is +1. 

In summary, Recall reflects the Bias plus a discounted 
estimation of Informedness and Precision reflects the 
Prevalence plus a discounted estimation of Markedness. 
Given usually Prevalence << ½ and Bias << ½, their 
complements Inverse Prevalence >> ½ and Inverse Bias 
>> ½ represent substantial weighting up of the true 
unbiased performance in both these measures, and hence 
also in F-factor. High Bias drives Recall up strongly and 
Precision down according to the strength of Informedness; 
high Prevalence drives Precision up and Recall down 
according to the strength of Markedness. 

Alternately, Informedness can be viewed (21) as a 
renormalization of Recall after subtracting off the chance 
level of Recall, Bias, and Markedness (20) can be seen as a 
renormalization of Precision after subtracting off the 
chance level of Precision, Prevalence (and Flach’s WRAcc, 
the unbiased form being equivalent to Bookmaker 
Informedness, was defined in this way as discussed in 
§2.3). Informedness can also be seen (21) as a 
renormalization of LR or NLR after subtracting off their 
chance level performance. The Kappa measure (Cohen, 
1960/1968; Carletta, 1996) commonly used in assessor 
agreement evaluation was similarly defined as a 
renormalization of Accuracy after subtracting off the 
expected Accuracy as estimated by the dot product of the 
Biases and Prevalences, and is expressible as a 
normalization of the discriminant of contingency, 
deltap,  by the mean error rate (viz. Kappa is 
deltap/[deltap +mean(fp ,fn )]).  All three measures 
are invariant in the sense that they are properties of the 
contingency tables that remain unchanged when we flip to 
the Inverse problem (interchange positive and negative for 
both conditions and predictions). That is we observe: 

Inverse Informedness = Informedness,  
Inverse Markedness = Markedness,  
Inverse Kappa = Kappa. 

The Dual problem (interchange antecedent and consequent) 
reverses which condition is the predictor and the predicted 
condition, and hence interchanges Precision and Recall, 
Prevalence and Bias, as well as Markedness and 
Informedness. For cross-evaluator agreement, both 
Informedness and Markedness are meaningful although 
the polarity and orientation of the contingency is arbitrary. 
Similarly when examining causal relationships 
(conventionally DeltaP vs DeltaP'), it is useful to evaluate 
both deductive and abductive directions in determining the 
strength of association. For example, the connection 
between cloud and rain involves cloud as one causal 
antecedent of rain (but sunshowers occur occasionally), 
and rain as one causal consequent of cloud (but cloudy 
days aren't always wet) – only once we have identified the 
full causal chain can we reduce to equivalence, and lack of 

equivalence may be a result of unidentified causes, 
alternate outcomes or both. 

The Perverse systems (interchanging the labels on either 
the predictions or the classes, but not both) have similar 
performance but occur below the chance line (since we 
have assumed strictly better than chance performance in 
assigning labels to the given contingency matrix). 

Note that the effect of Prevalence on Accuracy, Recall and 
Precision has also been characterized above (§2.3) in 
terms of Flach's demonstration of how skew enters into 
their characterization in ROC analysis, and effectively 
assigns different costs to (False) Positives and (False) 
Negatives.  This can be controlled for by setting the 
parameter c  appropriately to reflect the desired skew and 
cost tradeoff, with c=1  defining skew and cost insensitive 
versions.  However, only Informedness (or equivalents 
such as DeltaP' and skew-insensitive WRAcc) precisely 
characterizes the probability with which a model informs 
the condition, and conversely only Markedness (or DeltaP) 
precisely characterizes the probability that a condition 
marks (informs) the predictor. Similarly, only the 
Correlation (aka Coefficient of Proportionality aka 
Coefficient of Determination aka Squared Matthews 
Correlation Coefficient) precisely characterizes the 
probability that condition and predictor inform/mark each 
other, under our dichotomous assumptions. Note the 
Tetrachoric Correlation is another estimate of the Pearson 
Correlation made under the alternate assumption of an 
underlying continuous variable (assumed normally 
distributed), and is appropriate if we instead assume that 
we are dichotomizing a normal continuous variable 
(Hutchison, 1993). But in this article we are making the 
explicit assumption that we are dealing with a right/wrong 
dichotomy that is intrinsically discontinuous. 

Although Kappa does attempt to renormalize a debiased 
estimate of Accuracy, and is thus much more meaningful 
than Recall, Precision, Accuracy, and their biased 
derivatives, it is intrinsically non-linear, doesn't account 
for error well, and retains an influence of bias, so that there 
does not seem that there is any situation when Kappa 
would be preferable to Correlation as a standard 
independent measure of agreement (Uebersax, 1987; 
Bonett & Price, 2005). As we have seen, Bookmaker 
Informedness, Markedness and Correlation reflect the 
discriminant of relative contingency normalized according 
to different Evenness functions of the marginal Biases and 
Prevalences, and reflect probabilities relative to the 
corresponding marginal cases. However, we have seen 
that Kappa scales the discriminant in a way that reflects the 
actual error without taking into account expected error due 
to chance, and in effect it is really just using the 
discriminant to scale the actual mean error: Kappa is 
dp /[dp+mean(fp,fn )] = 1/[1+mean(fp,fn )/dp ] which 
approximates for small error to 1- mean(fp,fn )/dp .  

The relatively good fit of Kappa to Correlation and 
Informedness is illustrated in Fig. 2, along with the poor fit 
of the Rank Weighted Average and the Geometric and 
Harmonic (F-factor) means. The fit of the Evenness 
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weighted determinant is perfect and not easily 
distinguishable but the separate components (Determinant 
and geometric means of Real Prevalences and Prediction 
Biases) are also shown (+1 for clarity). 

2.7 Significance and Information Gain 

The ability to calculate various probabilities from a 
contingency table says nothing about the significance of 
those numbers – is the effect real, or is it within the 
expected range of variation around the values expected by 
chance? Usually this is explored by considering deviation 
from the expected values (ETP and its relatives) implied 
by the marginal counts (RP, PP and relatives) – or from 
expected rates implied by the biases (Class Prevalence and 

Label Bias). In the case of Machine Learning, Data Mining, 
or other artificially derived models and rules, there is the 
further question of whether the training and 
parameterization of the model has set the 'correct' or 'best' 
Prevalence and Bias (or Cost) levels. Furthermore, should 
this determination be undertaken by reference to the model 
evaluation measures (Recall, Precision, Informedness, 
Markedness and their derivatives), or should the model be 
set to maximize the significance of the results? 

This raises the question of how our measures of 
association and accuracy, Informedness, Markedness and 
Correlation, relate to standard measures of significance. 

This article has been written in the context of a Prevailing 
methodology in Computational Linguistics and 
Information Retrieval that concentrates on target positive 
cases and ignores the negative case for the purpose of both 
measures of association and significance. A classic 
example is saying “water” can only be a noun because the 
system is inadequate to the task of Part of Speech 
identification and this boosts Recall and hence F-factor, or 
at least setting the Bias to nouns close to 1, and the Inverse 
Bias to verbs close to 0.  Of course, Bookmaker will then 
be 0 and Markedness unstable (undefined, and very 
sensitive to any words that do actually get labelled verbs).  
We would hope that significance would also be 0 (or near 
zero given only a relatively small number of verb labels). 
We would also like to be able to calculate significance 
based on the positive case alone, as either the full negative 
information is unavailable, or it is not labelled.  

Generally when dealing with contingency tables it is 
assumed that unused labels or unrepresented classes are 
dropped from the table, with corresponding reduction of 
degrees of freedom. For simplicity we have assumed that 
the margins are all non-zero, but the freedoms are there 
whether they are used or not, so we will not reduce them or 
reduce the table. 

There are several schools of thought about significance 
testing, but all agree on the utility of calculating a p-value 
(see e.g. Berger, 1985), by specifying some statistic or 
exact test T(X) and setting p = Prob(T(X) ≥ T(Data)).  In 
our case, the Observed Data is summarized in a 
contingency table and there are a number of tests which 
can be used to evaluate the significance of the contingency 
table.  

For example, Fisher's exact test calculates the proportion 
of contingency tables that are at least as favourable to the 
Prediction/Marking hypothesis, rather than the null 
hypothesis, and provides an accurate estimate of the 
significance of the entire contingency table without any 
constraints on the values or distribution. The 
log-likelihood-based G2 test and Pearson's approximating 
χ2 tests are compared against a Chi-Squared Distribution 
of appropriate degree of freedom (r =1 for the binary 
contingency table given the marginal counts are known), 
and depend on assumptions about the distribution, and 
may focus only on the Predicted Positives. 

Figure 2. Accuracy of traditional measures.  
110 Monte Carlo simulations with 11 stepped expected 

Informedness levels (red line) with Bookmaker- 
estimated Informedness (red dots), Markedness (green 
dot) and Correlation (blue dot), and Kappa versus the 
biased traditional measures Rank Weighted Average 

(Wav), Geometric Mean (Gav) and Harmonic/F-factor 
(Fav). The Determinant (D) and Evenness k-th roots 
(gR=PrevG and gP=BiasP) are also shown (+1). Here 

K=4, N=128. 
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χ2 captures the Total Squared Deviation relative to 
expectation, is here calculated only in relation to positive 
predictions as often only the overt prediction is considered, 
and the implicit prediction of negative case is ignored 
(Manning & Schütze, 1999), noting that it sufficient to 
count r =1 cells to determine the table and make a 
significance estimate. However, χ2 is valid only for 
reasonably sized contingencies (one rule of thumb is that 
the smallest cell is at least 5 and the Yates and Williams 
corrections will be discussed in due course, see e.g. Lowry, 
1999; McDonald, 2007): 

χ2+P = (TP-ETP) 2/ETP + (FP-EFP) 2/EFP 

 = DTP 2/ETP + DFP 2/EFP 

 = 2DP 2/EHP, EHP = 2ETP ·EFP/[ETP+EFP] 

 = 2N ·dp2/ehp,ehp = 2etp ·efp/[etp+efp]  
 = 2N ·dp2/[rh ·pp]  =  N·dp2 / PrevG2/ Bias 

 = N·B2·EvennessR/ Bias =  N·r2
P·PrevG2/ Bias 

 ≈ (N+PN) ·r2
P·PrevG2   (Bias → 1) 

 = (N+PN) ·B2·EvennessR  (30)  

G2 captures Total Information Gain, being N times the 
Average Information Gain in nats, otherwise known as 
Mutual Information, which however is normally expressed 
in bits. We will discuss this separately under the General 
Case. We deal with G2 for positive predictions in the case 
of small effect, that is dp  close to zero, showing that G2 is 
twice as sensitive as χ2 in this range.  

G2
+P/2 = TP ·ln(TP/ETP) + FP ·ln(FP/EFP)  

 = TP ·ln( 1+DTP/ETP)+FP ·ln( 1+DFP/EFP)  
 ≈  TP·(DTP/ETP) + FP ·(DFP/EFP)   

 = 2N ·dp2/ehp   
 = 2N ·dp2/[rh ·pp] = N ·dp2/ PrevG2/ Bias 
 = N·B2·EvennessR/ Bias =  N·r2

P·PrevG2/ Bias 

 ≈ (N+PN) ·r2
P·PrevG2    (Bias → 1) 

 = (N+PN) ·B2·EvennessR   (31) 

In fact χ2 is notoriously unreliable for small N and small 
cell values, and G2 is to be preferred. The Yates correction 
(applied only for cell values under 5) is to subtract 0.5 
from the absolute dp value for that cell before squaring 
completing the calculation (Lowry, 1999; McDonald, 
2007). 

Our result (30-1) shows that χ2 and G2 significance of the 
Informedness effect increases with N as expected, but also 
with the square of Bookmaker, the Evenness of Prevalence 
(EvennessR = PrevG2 = Prev·(1−Prev)) and the number of 
Predicted Negatives (viz. with Inverse Bias)!  This is as 
expected.  The more Informed the contingency regarding 
positives, the less data will be needed to reach 
significance.  The more Biased the contingency towards 
positives, the less significant each positive is and the more 
data is needed to ensure significance. The Bias-weighted 
average over all Predictions (here for K=2 case: Positive 
and Negative) is simply KN·B2·PrevG2 which gives us an 
estimate of the significance without focussing on either 
case in particular. 

χ2
KB  =  2N·dtp 2/ PrevG2 = 2N ·rP

2 ·PrevG2     
 =  2N·rP

2 ·EvennessR      
 =  2N·B2·EvennessR     (32) 

Analogous formulae can be derived for the significance of 
the Markedness effect for positive real classes, noting that 
EvennessP = BiasG2 . 

χ2
KM  =  2N·dtp 2/ BiasG2 = 2N  ·rR

2 · BiasG2     
 = 2N  ·rR

2 ·BiasG2 
 =  2N·M2·EvennessP      (33) 

The Geometric Mean of these two overall estimates for the 
full contingency table is  

χ2
KBM =  2N·dtp 2/ PrevG·BiasG  

 =  2N·rP·rR ·PrevG·BiasG     
 =  2N·r2

G·EvennessG =   2Nρ2·EvennessG  
 =   2N·B·M ·EvennessG    (34) 

This is simply the total Sum of Squares Deviance (SSD) 
accounted for by the correlation coefficient BMG (22) 
over the N data points discounted by the Global Evenness 
factor, being the squared Geometric Mean of all four 
Positive and Negative Bias and Prevalence terms 
(EvennessG = PrevG·BiasG). The less even the Bias and 
Prevalence, the more data will be required to achieve 
significance, the maximum evenness value of 0.25 being 
achieved with both even bias and even Prevalence. Note 
that for even bias or Prevalence, the corresponding 
positive and negative significance estimates match the 
global estimate. 

When χ2
+P or G2

+P is calculated for a specific label in a 
dichotomous contingency table, it has one degree of 
freedom for the purposes of assessment of significance. 
The full table also has one degree of freedom, and 
summing for goodness of fit over only the positive 
prediction label will clearly lead to a lower χ2 estimate than 
summing across the full table, and while summing for only 
the negative label will often give a similar result it will in 
general be different. Thus the weighted arithmetic mean 
calculated by χ2KB is an expected value independent of the 
arbitrary choice of which predictive variate is investigated. 
This is used to see whether a hypothesized main effect (the 
alternate hypothesis, HA) is borne out by a significant 
difference from the usual distribution (the null hypothesis, 
H0). Summing over the entire table (rather than averaging 
of labels), is used for χ2 or G2 independence testing 
independent of any specific alternate hypothesis 
(McDonald, 2007), and can be expected to achieve a χ2 
estimate approximately twice that achieved by the above 
estimates, effectively cancelling out the Evenness term, 
and is thus far less conservative (viz. it is more likely to 
satisfy p<α): 

χ2
BM =   N·r2

G =   N·ρ2 =   N·φ2 =   N·B·M  (35) 

Note that this equates Pearson’s Rho, ρ, with the Phi 
Correlation Coefficient, φ, which is defined in terms of the 
Inertia φ2=χ2/N . We now have confirmed that not only 
does a factor of N connects the full contingency G2 to 
Mutual Information (MI), but it also normalizes the full 
approximate χ2 contingency to Matthews/Pearson 
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(=BMG=Phi) Correlation, at least for the dichotomous 
case. This tells us moreover, that MI and Correlation are 
measuring essentially the same thing, but MI and Phi do 
not tell us anything about the direction of the correlation, 
but the sign of Matthews or Pearson  or BMG Correlation 
does (it is the Biases and Prevalences that are multiplied 
and squarerooted).  

The individual or averaged goodness-of-fit estimates are 
in general much more conservative than full contingency 
table estimation of p by the Fisher Exact Test, but the full 
independence estimate can over inflate the statistic due to 
summation of more than there are degrees of freedom. The 
conservativeness has to do both with distributional 
assumptions of the χ2 or G2 estimates that are only 
asymptotically valid as well as the approximative nature of 
χ2 in particular.  

Also note that α bounds the probability of the null 
hypothesis, but 1-α is not a good estimate of the probabilty 
of any specific alternate hypothesis. Based on a Bayesian 
equal probability prior for the null hypothesis (H0, e.g. 
B=M=0 as population effect) and an unspecific one-tailed 
alternate hypothesis (HA, e.g. the measured B and C as true 
population effect), we can estimate new posterior 
probability estimates for Type I (H0 rejection, Alpha(p) ) 
and Type II (HA rejection, Beta(p) ) errors from the 
posthoc likelihood estimation (Sellke, Bayari and Berger, 
1999): 

L(p)  =   Alpha(p)/Beta(p) 

  ≈  – e p log(p)     (36) 

Alpha(p)  = 1/[1+1/L(p)]     (37) 

Beta(p)  = 1/[1+L(p)]     (38) 

2.8 Confidence Intervals and Deviations 

An alternative to significance estimation is confidence 
estimation in the statistical rather than the data mining 
sense. We noted earlier that selecting the highest isocost 
line or maximizing AUC or Bookmaker Informedness, B, 
is equivalent to minimizing fpr+fnr= (1- B) or 
maximizing tpr+tnr =(1+B), which maximizes the sum 
of normalized squared deviations of B from chance, 
sse B=B2 (as is seen geometrically from Fig. 1). Note that 
this contrasts with minimizing the sum of squares distance 
from the optimum which minimizes the relative sum of 
squared normalized error of the aggregated contingency, 
sse B=fpr 2+fnr 2.  However, an alternate definition 
calculating the sum of squared deviation from optimum is 
as a normalization the square of the minimum distance to 
the isocost of contingency, sse B=(1- B)2.  

This approach contrasts with the approach of considering 
the error versus a specific null hypothesis representing the 
expectation from margins. Normalization is to the range 
[0,1] like |B| and normalizes (due to similar triangles) all 
orientations of the distance between isocosts (Fig. 1). With 
these estimates the relative error is constant and the 
relative size of confidence intervals around the null and 
full hypotheses only depend on N as |B| and |1- B| are 

already standardized measures of deviation from null or 
full correlation respectively (σ/µ=1). Note however that if 
the empirical value is 0 or 1, these measures admit no error 
versus no information or full information resp. If the 
theoretical value is B=0, then a full ±1 error is possible, 
particularly in the discrete low N case where it can be 
equilikely and will be more likely than expected values 
that are fractional and thus likely to become zeros. If the 
theoretical value is B=1, then no variation is expected 
unless due to measurement error. Thus |1- B| reflects the 
maximum (low N) deviation in the absence of 
measurement error. 

The standard Confidence Interval is defined in terms of  
the Standard Error, SE =√[SSE/(N• (N-1 ))] =√[sse/(N-1 )]. 
It is usual to use a multiplier X of around X=2 as, given the 
central limit theorem applies and the distribution can be 
regarded as normal, a multiplier of 1.96 corresponds to a 
confidence of 95% that the true mean lies in the specified 
interval around the estimated mean, viz. the probability 
that the derived confidence interval will bound the true 
mean is 0.95 and the test thus corresponds approximately 
to a significance test with alpha =0.05 as the probability 
of rejecting a correct null hypothesis, or a power test with 
beta =0.05 as the probability of rejecting a true full or 
partial correlation hypothesis. A number of other 
distributions also approximate 95% confidence at 2SE. 

We specifically reject the more traditional approach which 
assumes that both Prevalence and Bias are fixed, defining 
margins which in turn define a specific chance case rather 
than an isocost line representing all chance cases – we 
cannot assume that any solution on an isocost line has 
greater error than any other since all are by definition 
equivalent. The above approach is thus argued to be 
appropriate for Bookmaker and ROC statistics which are 
based on the isocost concept, and reflects the fact that most 
practical systems do not in fact preset the Bias or match it 
to Prevalence, and indeed Prevalences in early trials may 
be quite different from those in the field.  

The specific estimate of sse that we present for alpha , the 
probability of the current estimate for B occurring if the 
true Informedness is B=0, is √sse B0=|1- B|=1, which is 
appropriate for testing the null hypothesis, and thus for 
defining unconventional error bars on B=0. Conversely, 
√sse B2=|B|=0, is appropriate for testing deviation from 
the full hypothesis in the absence of measurement error, 
whilst √sse B2=|B|=1 conservatively allows for full range 
measurement error, and thus defines unconventional error 
bars on B=M=C=1.  

In view of the fact that there is confusion between the use 
of beta  in relation to a specific full dependency 
hypothesis, B=1 as we have just considered, and the 
conventional definition of an arbitrary and unspecific 
alternate contingent hypothesis, B≠0, we designate the 
probability of incorrectly excluding the full hypothesis by 
gamma, and propose three possible related kinds of 
correction for the √sse  for beta : some kind of mean of 
|B| and |1- B| (the unweighted arithmetic mean is 1/2, the 
geometric mean is less conservative and the harmonic 
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mean least conservative), the maximum or minimum 
(actually a special case of the last, the maximum being 
conservative and the minimum too low an underestimate 
in general), or an asymmetric interval that has one value on 
the null side and another on the full side (a parameterized 
special case of the last that corresponds to percentile-based 
usages like box plots, being more appropriate to 
distributions that cannot be assumed to be symmetric).  

The √sse  means may be weighted or unweighted and in 
particular a self-weighted arithmetic mean gives our 
recommended definition, √sse B1=1- 2|B|+2B2, whilst an 
unweighted geometric mean gives √sse B1=√[|B|- B2] and 
an unweighted harmonic mean gives √sse B1=|B|- B2. All 
of these are symmetric, with the weighted arithmetic mean 
giving a minimum of 0.5 at B=±0.5 and a maximum of 1 at 
both B=0 and B=±1, contrasting maximally with sse B0 

and sse B2 resp in these neighbourhoods, whilst the 
unweighted harmonic and geometric means having their 
minimum of 0 at both B=0 and B=±1, acting like sse B0 

and sse B2 resp in these neighbourhoods (which there 
evidence zero variance around their assumed true values). 
The minimum at B=±0.5 for the geometric mean is 0.5 and 
for the harmonic mean, 0.25. 

For this probabilistic |B| range, the weighted arithmetic 
mean is never less than the arithmetic mean  and the 
geometric mean is never more than the arithmetic mean. 
These relations demonstrate the complementary nature of 
the weighted/arithmetic and unweighted geometric means. 
The maxima at the extremes is arguably more appropriate 
in relation to power as intermediate results should 
calculate squared deviations from a strictly intermediate 
expectation based on the theoretical distribution, and will 
thus be smaller on average if the theoretical hypothesis 
holds, whilst providing emphasized differentiation when 
near the null or full hypothesis. The minima of 0 at the 
extremes are not very appropriate in relation to 
significance versus the null hypothesis due the expectation 
of a normal distribution, but its power dual versus the full 
hypothesis is appropriately a minimum as perfect 
correlation admits no error distribution. Based on Monte 
Carlo simulations, we have observed that setting sse B1= 
√sse B2=1- |B| as per the usual convention is appropriately 
conservative on the upside but a little broad on the 
downside, whilst the weighted arithmetic mean, 
√sse B1=1- 2|B|+2B2, is sufficiently conservative on the 
downside, but unnecessarily conservative for high B. 

Note that these two-tailed ranges are valid for Bookmaker 
Informedness and Markedness that can go positive or 
negative, but a one tailed test would be appropriate for 
unsigned statistics or where a particular direction of 
prediction is assumed as we have for our contingency 
tables. In these cases a smaller multiplier of 1.65 would 
suffice, however the convention is to use the overlapping 
of the confidence bars around the various hypotheses 
(although usually the null is not explicitly represented). 

Thus for any two hypotheses (including the null 
hypothesis, or one from a different contingency table or 
other experiment deriving from a different theory or 

system) the traditional approach of checking that 1.95SE 
(or 2SE) error bars don’t overlap is rather conservative (it 
is enough for the value to be outside the range for a 
two-sided test), whilst checking overlap of 1SE error bars 
is usually insufficiently conservative given that the upper 
represents beta <alpha . Where it is expected that one 
will be better than the other, a 1.65SE error bar including 
the mean for the other hypothesis is enough to indicate 
significance (or power=1-beta ) corresponding to 
alpha  (or beta ) as desired.  

The traditional calculation of error bars based on Sum of 
Squared Error is closely related to the calculation of 
Chi-Squared significance based on Total Squared 
Deviation, and like it are not reliable when the 
assumptions of normality are not approximated, and in 
particular when the conditions for the central limit theorem 
are not satisfied (e.g. N<12 or cell-count<5). They are not 
appropriate for application to probabilistic measures of 
association or error. This is captured by the meeting of the 
X=2 error bars for the full (sse B2) and null (sse B0) 
hypotheses at N=16 (expected count of only 4 per cell).  

Here we have considered only the dichotomous case but 
discuss confidence intervals further below, in relation to 
the general case. 

3 Simple Examples  

Bookmaker Informedness has been defined as the 
Probability of an informed decision, and we have shown 
identity with DeltaP' and WRAcc, and the close 
relationship (10, 15) with ROC AUC. A system that makes 
an informed (correct) decision for a target condition with 
probability B, and guesses the remainder of the time, will 
exhibit a Bookmaker Informedness (DeltaP') of B and a 
Recall of B·(1−Prev) + Bias.  Conversely a proposed 
marker which is marked (correctly) for a target condition 
with probability M, and according to chance the remainder 
of the time, will exhibit a Markedness (DeltaP) of M and a 
Precision of M·(1-Bias) + Prev. Precision and Recall are 
thus biased by Prevalence and Bias, and variation of 
system parameters can make them rise or fall 
independently of Informedness and Markedness. 
Accuracy is similarly dependent on Prevalence and Bias:  

2·(B·(1−Prev)·Prev+Bias·Prev)+1-( Bias+Prev),  

and Kappa has an additional problem of non-linearity due 
to its complex denominator: 

B·(1−Prev)·Prev / (1- Bias·Prev- (Bias+Prev)/2). 

It is thus useful to illustrate how each of these other 
measures can run counter to an improvement in overall 
system performance as captured by Informedness. For the 
examples in Table 2 (for N=100) all the other measure rise, 
some quite considerably, but Bookmaker actually falls. 
Table 2 also illustrates the usage of the Bookmaker and 
Markedness variants of the χ2 statistic versus the standard 
formulation for the positive case, showing also the full K 
class contingency version (for K=2 in this case).  

Note that under the distributional and approximative 
assumptions for χ2 neither of these contingencies differ 
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sufficiently from chance at N=100 to be significant to the 
0.05 level due to the low Informedness Markedness and 
Correlation, however doubling the performance of the 
system would suffice to achieve significance at N=100 
given the Evenness specified by the Prevalences and/or 
Biases).  Moreover, even at the current performance levels 
the Inverse (Negative) and Dual (Marking) Problems show 
higher χ2 significance, approaching the 0.05 level in some 
instances (and far exceeding it for the Inverse Dual).  The 
KB variant gives a single conservative significance level 
for the entire table, sensitive only to the direction of 
proposed implication, and is thus to be preferred over the 
standard versions that depend on choice of condition. 

Incidentally, the Fisher Exact Test shows significance to 
the 0.05 level for both the examples in Table 2. This 
corresponds to an assumption of a hypergeometric 
distribution rather than normality – viz. all assignments of 
events to cells are assumed to be equally likely given the 
marginal constraints (Bias and Prevalence). However it is 
in appropriate given the Bias and Prevalence are not 
specified by the experimenter in advance of the experiment 
as is assumed by the conditions of this test. This has also 
been demonstrated empirically through Monte Carlo 
simulation as discussed later.  See Sellke, Bayarri, and 
Berger (2001) for a comprehensive discussion on issues 
with significance testing, as well as Monte Carlo 
simulations. 

4 Practical Considerations  

If we have a fixed size dataset, then it is arguably sufficient 
to maximize the determinant of the unnormalized 
contingency matrix, DT. However this is not comparable 
across datasets of different sizes, and we thus need to 
normalize for N, and hence consider the determinant of the 
normalized contingency matrix, dt . However, this value 
is still influenced by both Bias and Prevalence.  

In the case where two evaluators or systems are being 
compared with no a priori preference, the Correlation 
gives the correct normalization by their respective Biases, 
and is to be preferred to Kappa. 

In the case where an unimpeachable Gold Standard is 
employed for evaluation of a system, the appropriate 
normalization is for Prevalence or Evenness of the real 
gold standard values, giving Informedness.  Since this is 
constant, optimizing Informedness and optimizing dt are 
equivalent. 

More generally, we can look not only at what proposed 
solution best solves a problem, by comparing 
Informedness, but which problem is most usefully solved 
by a proposed system.  In a medical context, for example, 
it is usual to come up with potentially useful medications 
or tests, and then explore their effectiveness across a wide 
range of complaints. In this case Markedness may be 
appropriate for the comparison of performance across 
different conditions. 

Recall and Informedness, as biased and unbiased variants 
of the same measure, are appropriate for testing 
effectiveness relative to a set of conditions, and the 
importance of Recall is being increasingly recognized as 
having an important role in matching human performance, 
for example in Word Alignment for Machine Translation 
(Fraser and Marcu, 2007).  Precision and Markedness, as 
biased and unbiased variants of the same measure, are 
appropriate for testing effectiveness relative to a set of 
predictions. This is particularly appropriate where we do 
not have an appropriate gold standard giving correct labels 
for every case, and is the primary measure used in 
Information Retrieval for this reason, as we cannot know 
the full set of relevant documents for a query and thus 
cannot calculate Recall. 

However, in this latter case of an incompletely 
characterized test set, we do not have a fully specified 
contingency matrix and cannot apply any of the other 
measures we have introduced. Rather, whether for 
Information Retrieval or Medical Trials, it is assumed that 
a test set is developed in which all real labels are reliably 
(but not necessarily perfectly) assigned. Note that in some 
domains, labels are assigned reflecting different levels of 
assurance, but this has lead to further confusion in relation 
to possible measures and the effectiveness of the 

 60.0% 40.0%         α=0.05 3.85   
42.0% 30  12  42 B 20.00% Rec 50.00% F 58.82%  χ2

+P 2.29 χ2
KB 1.92 

58.0% 30  28  58 M 19.70% Prec 71.43% G 59.76%  χ2
+R 2.22 χ2

KM 1.89 

 60  40  100 C 19.85% Rac 58.00% κ 18.60%  χ 2 2.29 χ2
KBM 1.91 

 

 68.0% 32.0%         α=0.05 3.85   
76.0% 56  20  76 B 19.85% Rec 82.35% F 77.78%  χ2

+P 1.13 χ2
KB 1.72 

24.0% 12  12  24 M 23.68% Prec 73.68% G 77.90%  χ2
+R 1.61 χ2

KM

 2.05 
 68  32  100 C 21.68% Rac 68.00% κ 21.26%  χ2 1.13 χ2

KBM 1.87 

Table 2. Binary contingency tables. Colour coding is as in Table 1, showing example counts of correct (green) and 
incorrect (pink) decisions and the resulting Bookmaker Informedness (B=WRacc=DeltaP'), Markedness (C=DeltaP), 

Matthews Correlation (C), Recall (Rec), Precision (Prec), Rand Accuracy (Rac), Harmonic Mean of Recall and Precision (F), 
Geometric Mean of Recall and Precision (G), Cohen Kappa (κ),and  χ 2 calculated using Bookmaker (χ2

+P), Markedness (χ 2
+R) 

and standard (χ 2) methods across the positive prediction or condition only, as well as calculated across the entire K=2 class 
contingency using the newly proposed methods, all of which are designed to be referenced to alpha (α) according to the χ 2 

distribution, and are more reliable due to taking into account all contingencies. Single-tailed threshold is shown for α=0.05. 
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techniques evaluated (Fraser and Marcu, 2007).  In 
Information Retrieval, the labelling of a subset of relevant 
documents selected by an initial collection of systems can 
lead to relevant documents being labelled as irrelevant 
because they were missed by the first generation systems – 
so for example systems are actually penalized for 
improvements that lead to discovery of relevant 
documents that do not contain all specified query words. 
Thus here too, it is important to develop test sets that of 
appropriate size, fully labelled, and appropriate for the 
correct application of both Informedness and Markedness, 
as unbiased versions of Recall and Precision. 

This Information Retrieval paradigm indeed provides a 
good example for the understanding of the Informedness 
and Markedness measures.  Not only can documents 
retrieved be assessed in terms of prediction of relevance 
labels for a query using Informedness, but queries can be 
assessed in terms of their appropriateness for the desired 
documents using Markedness, and the different kinds of 
search tasks can be evaluated with the combination of the 
two measures.  The standard Information Retrieval mantra 
that we do not need to find all relevant documents (so that 
Recall or Informedness is not so relevant) applies only 
where there are huge numbers of documents containing the 
required information and a small number can be expected 
to provide that information with confidence.  However 
another kind of Document Retrieval task involves a 
specific and rather small set of documents for which we 
need to be confident that all or most of them have been 
found (and so Recall or Informedness are especially 
relevant). This is quite typical of literature review in a 
specialized area, and may be complicated by new 
developments being presented in quite different forms by 
researchers who are coming at it from different directions, 
if not different disciplinary backgrounds.  A good example 
of this is the decade it has taken to find the literature that 
discusses the concept variously known as Edge, 
Informedness, Regression, DeltaP' and ROC AUC – and 
perhaps this wheel has been invented in yet other contexts 
as well. 

5 The General Case  

So far we have examined only the binary case with 
dichotomous Positive versus Negative classes and labels. 

It is beyond the scope of this article to consider the 
continuous or multi-valued cases, although the Matthews 
Correlation is a discretization of the Pearson Correlation 
with its continuous-valued assumption, and the Spearman 
Rank Correlation is an alternate form applicable to 
arbitrary discrete value (Likert) scales, and Tetrachoric 
Correlation is available to estimate the correlation of an 
underlying continuous scale. If continuous measures 
corresponding to Informedness and Markedness are 
required due to the canonical nature of one of the scales, 
the corresponding Regression Coefficients are available. 

It is however, useful in concluding this article to consider 
briefly the generalization to the multi-class case, and we 
will assume that both real classes and predicted classes are 

categorized with K labels, and again we will assume that 
each class is non-empty unless explicitly allowed (this is 
because Precision is ill-defined where there are no 
predictions of a label, and Recall is ill-defined where there 
are no members of a class). 

5.1 Generalization of Association 

Powers (2003) derives Bookmaker Informedness (41) 
analogously to Mutual Information & Conditional Entropy 
(39-40) as a pointwise average across the contingency 
cells, expressed in terms of label probabilities PP(l), where 
PP(l) is the probability of Prediction l, and 
label-conditioned class probabilities PR(c|l) , where  PR(c|l) 
is the probability that the Prediction labeled l is actually of 
Real class c, and in particular  PR(l|l) = Precision(l), and 
where the delta functions are mathematical shorthands for 
Boolean expressions interpreted algorithmically as in C, 
with true expressions taking the value 1 and false 
expressions 0, so that δcl  = (c = l) represents the standard 
Dirac delta function and ∂cl = (c ≠ l) its complement. 

MI(R||P) =∑l  PP(l)
  ∑c PR(c|l) [–log(PR(c|l))/PR(c)] (39) 

H(R|P)  =∑l  PP(l)
  ∑c PR(c|l) [–log(PR(c|l))]  (40) 

B(R|P) =∑l  PP(l)
   ∑c PR(c|l) [PP(l)/(PR(l) – ∂cl)] (41) 

We now define a binary dichotomy for each label l with l 
and the corresponding c as the Positive cases (and all other 
labels/classes grouped as the Negative case). We next 
denote its Prevalence Prev(l) and its dichotomous 
Bookmaker Informedness B(l), and thus can simplify (41) 
to 

B(R|P)  = ∑l  Prev(l) B(l)     (42) 

Analogously we define dichotomous Bias(c) and 
Markedness(c) and derive 

M(P|R)  = ∑c  Bias(c) M(c)    (43) 

These formulations remain consistent with the definition 
of Informedness as the probability of an informed decision 
versus chance, and Markedness as its dual. The Geometric 
Mean of multi-class Informedness and Markedness would 
appear to give us a new definition of Correlation, whose 
square provides a well defined Coefficient of 
Determination. Recall that the dichotomous forms of 
Markedness (20) and Informedness (21)  have the 
determinant of the contingency matrix as common 
numerators, and have denominators that relate only to the 
margins, to Prevalence and Bias respectively. Correlation, 
Markedness and Informedness are thus equal when 
Prevalence = Bias. The dichotomous Correlation 
Coefficient would thus appear to have three factors, a 
common factor across Markedness and Informedness, 
representing their conditional dependence, and factors 
representing Evenness of Bias (cancelled in Markedness) 
and Evenness of Prevalence (cancelled in Informedness), 
each representing a marginal independence. 

In fact, Bookmaker Informedness can be driven arbitrarily 
close to 0 whilst Markedness is driven arbitrarily close to 1, 
demonstrating their independence – in this case Recall and 
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Precision will be driven to or close to 1. The arbitrarily 
close hedge relates to our assumption that all predicted and 
real classes are non-empty, although appropriate limits 
could be defined to deal with the divide by zero problems 
associated with these extreme cases. Technically, 
Informedness and Markedness are conditionally 
independent – once the determinant numerator is fixed, 
their values depend only on their respective marginal 
denominators which can vary independently. To the extent 
that they are independent, the Coefficient of 

Determination acts as the joint probability of mutual 
determination, but to the extent that they are dependent, 
the Correlation Coefficient itself acts as the joint 
probability of mutual determination. 

These conditions carry over to the definition of 
Correlation in the multi-class case as the Geometric Mean 
of Markedness and Informedness – once all numerators 
are fixed, the denominators demonstrate marginal 
independence. 

We now reformulate the Informedness and Markedness 
measures in terms of the Determinant of the Contingency 
and Evenness, generalizing (20-22). In particular, we note 
that the definition of Evenness in terms of the Geometric 
Mean or product of biases or Prevalences is consistent 
with the formulation in terms of the determinants DET and 
det  (generalizing dichotomous DP=DTP and dp=dtp ) 
and their geometric interpretation as the area of a 
parallelogram in PN-space and its normalization to 
ROC-space by the product of Prevalences, giving 
Informedness, or conversely normalization to Markedness 
by the product of biases. The generalization of DET to a 
volume in high dimensional PN-space and det  to its 
normalization by product of Prevalences or biases, is 
sufficient to guarantee generalization of (20-22) to K 
classes by reducing from KD to SSD so that BMG has the 
form of a coefficient of proportionality of variance: 

M   ≈  [det / BiasGK]2/K  
 =  det 2/K  / EvennessP+    (44) 

B   ≈  [det / PrevGK ]2/K  
 =  det 2/K  / EvennessR+    (45) 

BMG ≈  det 2/K  / [ PrevG · BiasG]  
 =  det 2/K  / EvennessG+    (46)  

We have marked the Evenness terms in these equations 
with a trailing plus to distinguish them from other usages, 
and its definitions are clear from comparison of their 
denominators. Note that the Evenness terms for the 
generalized regressions (44-45) are not Arithmetic Means 
but have the form of Geometric Means. Furthermore, the 
dichotomous case emerges for K=2 as expected. 
Empirically (Fig. 3), this generalization matches well near 
B=0 or B=1, but fares less well in between the extremes, 
suggesting a mismatched exponent in the heuristic 
conversion of K dimensions to 2. 

In Fig. 3 we therefore show and compare an alternate 
exponent of 1/(3K- 2) rather than the exponent of 2/K 
shown in (44 to 45).  This also reduces to 1 and hence the 
expected exact correspondence for K=2. This suggests that 
what is important is not just the number of dimensions, but 
the also the number of marginal degrees of freedom: 
K+2(K- 1), but although it matches well for high degrees 
of association it shows similar error at low informedness. 
The precise relationship between Determinant and 
Correlation, Informedness and Markedness for the general 
case remains a matter for further investigation. We 
however continue with the use of the approximation based 
on 2/K. 

Figure 3. Determinant-based estimates of correlation. 
110 Monte Carlo simulations with 11 stepped expected 

Informedness levels (red line) with Bookmaker- 
estimated Informedness (red dots), Markedness (green dot) 

and Correlation (blue dot), with significance (p+1) 
calculated using G2, X2, and Fisher estimates, and 

Correlation estimates calculated from the Determinant of 
Contingency using two different exponents, 2/K (DB & 

DM) and 1/[3K- 2] (DBa and DMa). The difference 
between the estimates is also shown. Here K=4,  N=128, 

X=1.96, α=β=0.05. 
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The EvennessR (Prev.IPrev) concept corresponds to the 
concept of Odds (IPrev/Prev), where Prev+IPrev=1, and 
Powers(2003) shows that (multi-class) Bookmaker 
Informedness corresponds to the expected return per bet 
made with a fair Bookmaker (hence the name). From the 
perspective of a given bet (prediction), the return increases 
as the probability of winning decreases, which means that 
an increase in the number of other winners can increase the 
return for a bet on a given horse (predicting a particular 
class) through changing the Prevalences and thus 
EvennessR and the Odds. The overall return can thus 
increase irrespective of the success of bets in relation to 
those new wins. In practice, we normally assume that we 
are making our predictions on the basis of fixed (but not 
necessarily known) Prevalences which may be estimated a 
priori (from past data) or post hoc (from the experimental 
data itself), and for our purposes are assumed to be 
estimated from the contingency table. 

5.2 Generalization of Significance 

In relation to Significance, the single class χ+P
2 and G+P

2 
definitions both can be formulated in terms of cell counts 
and a function of ratios, and would normally be summed 
over at least (K−1)2 cells of a K-class contingency table 
with (K−1)2 degrees of freedom to produce a statistic for 
the table as a whole.  However, these statistics are not 
independent of which variables are selected for evaluation 
or summation, and the p-values obtained are thus quite 
misleading, and for highly skewed distributions (in terms 
of Bias or Prevalence) can be outlandishly incorrect. If we 
sum log-likelihood (31) over all K2 cells we get N·MI(R||P) 
which is invariant over Inverses and Duals. 

The analogous Prevalence-weighted multi-class statistic 
generalized from the Bookmaker Informedness form of 
the Significance statistic, and the Bias-weighted statistic 
generalized from the Markedness form, extend Eqns 32-34 
to the K>2 case by probability-weighted summation (this is 
a weighted Arithmetic Mean of the individual cases 
targeted to r=K- 1 degree of freedom): 

χ2KB = KN ·B2·EvennessR–          (47) 

χ2KM = KN ·M2·EvennessP–      (48) 

χ2KBM  = KN ·B·M ·EvennessG–     (49) 

For K=2 and r=1, the Evenness terms were the product of 
two complementary Prevalence or Bias terms in both the 
Bookmaker derivations and the Significance Derivations, 
and (30) derived a single multiplicative Evenness factor 
from a squared Evenness factor in the numerator deriving 
from dtp 2, and a single Evenness factor in the 
denominator. We will discuss both these Evenness terms 
in the a later section.  We have marked the Evenness terms 
in (47-49) with a trailing minus to distinguish them from 
the forms used in (20-22,44-46). 

One specific issue with the goodness-of-fit approach 
applied to K-class contingency tables relates to the up to 
(K−1)2 degrees of freedom, which we focus on now.  The 
assumption of independence of the counts in (K−1)2 of the 

cells is appropriate for testing the null hypothesis, H0, and 
the calculation versus alpha , but is patently not the case 
when the cells are generated by K condition variables and 
K prediction variables that mirror them.  Thus a correction 
is in order for the calculation of beta for some specific 
alternate hypothesis HA or to examine the significance of 
the difference between two specific hypotheses HA and HB 
which may have some lesser degree of difference.  

Whilst many corrections are possible, in this case 
correcting the degrees of freedom directly seems 
appropriate and whilst using r  = (K−1)2 degrees of 
freedom is appropriate for alpha , using r  = K−1 degrees 
of freedom is suggested for beta  under the conditions 
where significance is worth testing, given the association 
(mirroring) between the variables is almost complete. In 
testing against beta , as a threshold on the probability that 
a specific alternate hypothesis of the tested association 
being valid should be rejected. The difference in a χ2 
statistic between two systems (r  = K−1) can thus be tested 
for significance as part of comparing two systems (the 
Correlation-based statistics are recommended in this case). 
The approach can also compare a system against a model 
with specified Informedness (or Markedness).  Two 
special cases are relevant here, H0, the null hypothesis 
corresponding to null Informedness (B = 0: testing alpha  
with r  = (K−1)2), and H1, the full hypothesis 
corresponding to full Informedness (B = 1:  testing beta  
with r  = K−1). 

Equations 47-49 are proposed for interpretation under  
r  = K−1 degrees of freedom (plus noise) and are 
hypothesized to be more accurate for investigating the 
probability of the alternate hypothesis in question, HA 
(beta ).  

Equations 50-52 are derived by summing over the (K−1) 

complements of each class and label before applying the 
Prevalence or bias weighted sum across all predictions and 
conditions.  These measures are thus applicable for 
interpretation under r  = (K−1)2 degrees of freedom (plus 
biases) and are theoretically more accurate for estimating 
the probability of the null hypothesis H0 (alpha ).  In 
practice, the difference should always be slight (as the 
cumulative density function of the gamma distribution χ2 
is locally near linear in r ) reflecting the usual assumption 
that alpha  and beta  may be calculated from the same 
distribution. Note that there is no difference in either the 
formulae nor r  when K=2. 

χ2
XB = K (K−1)·N·B2·EvennessR–     (50) 

χ2
XM = K (K−1)·N·M2·EvennessP–    (51) 

χ2
XBM   = K (K−1)·N·B·M ·EvennessG–   (52) 

Equations 53-55 are applicable to naïve unweighted 
summation over the entire contingency table, but also 
correspond to the independence test with r  = (K−1)2 
degrees of freedom, as well as slightly underestimating but 
asymptotically approximating the case where Evenness is 
maximum in (50-52) at 1/K 2. When the contingency table 
is uneven, Evenness factors will be lower and a more 
conservative p-value will result from (50-52), whilst 
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summing naively across all cells (53-55) they can lead to 
inflated statistics and underestimated p-values. However, 
they are the equations that correspond to common usage of 
the χ2 and G2 statistics as well as giving rise implicitly to 
Cramer’s V = [χ2/N(K- 1)]1/2 as the corresponding 
estimate of the Pearson correlation coefficient, ρ, so that 
Cramer’s V is thus also likely to be inflated as an estimate 
of association where Evenness is low. We however, note 
these, consistent with the usual conventions, as our 
definitions of the conventional forms of the χ2 statistics 
applied to the multiclass generalizations of the Bookmaker 
accuracy/association measures: 

χ2B  = (K−1)·N·B2       (53) 

χ2M  = (K−1)·N·M2      (54) 

χ2BM    = (K−1)·N·B·M     (55) 

Note that Cramer’s V calculated from standard full 
contingency χ2 and G2 estimates tends vastly overestimate 
the level of association as measured by Bookmaker and 
Markedness or constructed empirically. It is also important 
to note that the full matrix significance estimates (and 
hence Cramer’s V and similar estimates from these χ2 
statistics) are independent of the permutations of predicted 
labels (or real classes) assigned to the contingency tables, 
and that in order to give such an independent estimate 
using the above family of Bookmaker statistics, it is 
essential that the optimal assignment of labels is made – 
perverse solutions with suboptimal allocations of labels 
will underestimate the significance of the contingency 
table as they clearly do take into account what one is trying 
to demonstrate and how well we are achieving that goal. 

The empirical observation concerning Cramer’s V 
suggests that the strict probabilistic interpretation of the 
multiclass generalized Informedness and Markedness 
measures (probability of an informed or marked decision), 
is not reflected by the traditional correlation measures, the 
squared correlation being a coefficient of proportionate 
determination of variance and that outside of the 2D case 
where they match up with BMG, we do not know how to 
interpret them as a probability. However, we also note that 
Informedness and Markedness tend to correlate and are 
only conditionally independent, so that their product 
cannot necessarily be interpreted as a joint probability, 
notwithstanding that it has the form of a probability. 

We note further that we have not considered a tetrachoric 
correlation, which estimates the regression of assumed 
underlying continuous variables to allow calculation of 
their Pearson Correlation.   

Sketch Proof of General Chi-squared Test 

The traditional χ2 statistics sums over a number of terms 
specified by r  degrees of freedom, stopping once 
dependency emerges. The G2 statistic derives from a 
log-likelihood analysis which is also approximated, but 
less reliably, by the χ2 statistic. In both cases, the variates 

are assumed to be asymptotically normal and are expected 
to be normalized to mean µ=0, standard deviation σ=1, and 
both the Pearson and Matthews correlation and the  χ2 and 
G2 significance statistics implicitly perform such a 
normalization. However, this leads to significance 
statistics that vary according to which term is in focus if 
we sum over r  rather than K2.  In the binary dichotomous 
case, it makes sense to sum over only the condition of 
primary focus, but in the general case it involves leaving 
out one case (label and class). By the Central Limit 
Theorem, summing over (K- 1)2 such independent z-scores 
gives us a normal distribution with σ=(K- 1).  

We define a single case χ2
+lP from the χ2+P (30) calculated 

for label l = class c as the positive dichotomous case. We 
next sum over these for all labels other than our target c to 
get a (K- 1)2 degree of freedom estimate χ2

-lXP given by 

χ2
-lXP = ∑c≠l  χ

2
+lP = ∑c  χ

2
+cP – χ2

+lP   (56) 

We then perform a Bias(l) weighted sum over χ2-lXP to 
achieve our label independent (K- 1)2 degree of freedom 
estimate χ2

XB as follows (substituting from equation 30 
then 39): 

χ2
XB  = ∑l Bias(l) · [N·B2·EvennessR(l)/ Bias(l) – χ2+lP] 

 = K · χ2
KB – χ2

KB = (K- 1) · χ2
KB 

 = K(K- 1) ·N·B2·EvennessR    (57) 

This proves the Informedness form of the generalized 
(K- 1)2 degree of freedom χ2 statistic (42), and defines 
EvennessR as the Arithmetic Mean of the individual 
dichotomous EvennessR(l) terms (assuming B is constant). 
The Markedness form of the statistic (43) follows by 
analogous (Dual) argument, and the Correlation form (44) 
is simply the Geometric Mean of these two forms. Note 
however that this proof assumes that B is constant across 
all labels, and that assuming the determinant det  is 
constant leads to a derivative of (20-21) involving a 
Harmonic Mean of Evenness as discussed in the next 
section. 
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The simplified (K- 1) degree of freedom χ2K statistics were 
motivated as weighted averages of the dichotomous 
statistics, but can also be seen to approximate the χ2

X 
statistics given the observation that for a rejection 
threshold on the null hypothesis H0, alpha  < 0.05, the χ2 
cumulative isodensity lines are locally linear in r  (Fig. 4). 
Testing differences within a beta  threshold as discussed 
above, is appropriate using the χ2

K series of statistics since 
they are postulated to have (K- 1) degrees of freedom. 
Alternately they may be tested according to the χ2

X series 
of statistics given they are postulated to differ in (K- 1)2 
degrees of freedom, namely the noise, artefact and error 
terms that make the cells different between the two 
hypotheses (viz. that contribute to decorrelation). In 

practice, when used to test two systems or models other 
than the null, the models should be in a sufficiently linear 
part of the isodensity contour to be insensitive to the 
choice of statistic and the assumptions about degrees of 
freedom.  When tested against the null model, a relatively 
constant error term can be expected to be introduced by 
using the lower degree of freedom model. The error 
introduced by the Cramer’s V (K-1 degree of freedom) 
approximation to significance from G2 or χ2 can be viewed 
in two ways.  If we start with a G2 or χ2 estimate as 
intended by Cramer we can test the accuracy of the 
estimate versus the true correlation, markedness and 
informedness as illustrated in Fig. 3. Note that we can see 
here that Cramer’s V underestimates association for high 
levels of informedness, whilst it is reasonably accurate for 
lower levels.  If we use (53) to (55) to estimate 
significance from the empirical association measures, we 
will thus underestimate significance under conditions of 
high association – viz. it the test is more conservative as 
the magnitude of the effect increases. 

5.3 Generalization of Evenness 

The proof that the product of dichotomous Evenness 
factors is the appropriate generalization in relation to the 
multiclass definition of Bookmaker Informedness and 
Markedness does not imply that it is an appropriate 
generalization of the dichotomous usage of Evenness in 
relation to Significance, and we have seen that the 
Arithmetic rather the Geometric Mean emerged in the 
above sketch proof. Whilst in general one would assume 
that Arithmetic and Harmonic Means approximate the 
Geometric Mean, we argue that the latter is the more 
appropriate basis, and indeed one may note that it not only 
approximates the Geometric Mean of the other two means, 
but is much more stable as the Arithmetic and Harmonic 
means can diverge radically from it in very uneven 
situations, and increasingly with higher dimensionality. 
On the other hand, the Arithmetic Mean is insensitive to 
evenness and is thus appropriate as a baseline in 
determining evenness. Thus the  ratios between the means, 
as well as between the Geometric Mean and the geometric 
mean of the Arithmetic and Harmonic means, give rise to 
good measures of evenness. 

On geometric grounds we introduced the Determinant of 
Correlation, det , generalizing dp , and representing the 
volume of possible deviations from chance covered by the 
target system and its perversions, showing its 
normalization to and Informedness-like statistic is 
EvennessP+ the product of the Prevalences (and is exactly 
Informedness for K=2). This gives rise to an alternative 
dichotomous formulation for the aggregate false positive 
error for an individual case in terms of the K- 1 negative 
cases, using a ratio or submatrix determinant to submatrix 
product of Prevalences. This can be extended to all K cases 
while reflecting K- 1 degrees of freedom, by extending to 
the full contingency matrix determinant, det , and the full 
product of Prevalences, as our definition of another form 
of Evenness, EvennessR# being the Harmonic Mean of the 
dichotomous Evenness terms for constant determinant: 

Figure 5. Illustration of significance and Cramer’s V. 
110 Monte Carlo simulations with 11 stepped expected 

Informedness levels (red line) with Bookmaker- 
estimated Informedness (red dots), Markedness (green 
dot) and Correlation (blue dot), with significance (p+1) 

calculated using G2, X2, and Fisher estimates, and 
Cramer’s V Correlation estimates calculated from both 

G2 and X2. Here K=4,  N=128, X=1.96, α=β=0.05. 
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χ2KB  = KN ·det 2/K  / EvennessR#    (58) 

χ2KM  = KN ·det 2/K  / EvennessP#    (59) 

χ2KBM = KN ·det 2/K  / EvennessG#    (60) 

Recall that the + form of Evenness is exemplified by 

EvennessR+ = [Πl Prev(l)]2/K  =PrevG   (61) 

and that the relationship between the three forms of 
Evenness is of the form 

EvennessR– =  EvennessR+ /  EvennessR#   (62) 

where the + form is defined as the squared Geometric 
Mean (44-46), again suggesting that the – form is best 
approximated as an Arithmetic Mean (47-49).  The above 
division by the Harmonic Mean is reminiscent of the 
Williams’ correction which divides the G2 values by an 
Evenness-like term q=1+(a 2-1)/6Nr  where a is the 
number of categories for a goodness-of-fit test, K 
(McDonald, 2007) or more generally, K/ PrevH (Williams, 
1976) which has maximum K when Prevalence is even, 
and r=K-1  degrees of freedom, but for the more relevant 
usage as an independence test on a complete contingency 
table with r=(K-1) 2 degrees of freedom it is given by 
a2-1=(K/ PrevH-1) ·(K/ BiasH-1 ) where PrevH and 
BiasH are the Harmonic Means across the K classes or 
labels respectively (Williams, 1976; Smith et al., 1981; 
Sokal & Rohlf, 1995; McDonald, 2007). 

In practice, any reasonable excursion from Evenness will 
be reflected adequately by any of the means discussed, 
however it is important to recognize that the + form is 
actually a squared Geometric Mean and is the product of 
the other two forms as shown in (62). An uneven bias or 
Prevalence will reduce all the corresponding Evenness 
forms, and compensate against reduced measures of 
association and significance due to lowered determinants.  

Whereas broad assumptions and gross accuracy within an 
order of magnitude may be acceptable for calculating 
significance tests and p-values (Smith et al., 1981), it is 
clearly not appropriate for estimate the strength of 
associations.  Thus the basic idea of Cramer’s V is flawed 
given the rough assumptions and substantial errors 
associated with significance tests.  It is thus better to start 
with a good measure of association, and use analogous 
formulae to estimate significance or confidence. 

5.4 Generalization of Confidence 

The discussion of confidence generalizes directly to the 
general case, with the approximation using Bookmaker 
Informedness, or analogously Markedness, applying 
directly (the Informedness form is again a Prevalence 
weighted sum, in this case of a sum of squared versus 
absolute errors), viz. 

CIB2= X · [1- |B|]  / √[2 E· (N-1 )]     (63) 

CIM2= X · [1- |B|]  / √[2 E· (N-1 )]    (64) 

CIC2= X ·  [1- |B|]  / √[ 2 E· (N-1 )]    (65) 

In Equations 63-65 Confidence Intervals derived from the 
sse estimates of §2.8 are subscripted to show those 
appropriate to the different measures of association 
(Bookmaker Informedness, B; Markedness, M, and their 
geometric mean as a symmetric measure of Correlation, C). 
Those shown relate to beta  (the empirical hypothesis 
based on the calculated B, giving rise to a test of power), 
but are also appropriate both for significance testing the 
null hypothesis (B=0) and provide tight (0-width) bounds 
on the full correlation (B=1) hypothesis as appropriate to 
its signification of an absence of random variation and 
hence 100% power (and extending this to include 
measurement error, discretization error, etc.)  

The numeric subscript is 2 as notwithstanding the different 
assumptions behind the calculation of the confidence 
intervals (0 for the null hypothesis corresponding to 
alpha =0.05, 1 for the alternate hypothesis corresponding 
to beta =0.05 based on the weighted arithmetic model, 
and 2 for the full correlation hypothesis corresponding to 
gamma=0.05 – for practical purposes it is reasonable to 
use |1- B| to define the basic confidence interval for CIB0, 
CIB1 and CIB2, given variation is due solely to unknown 
factors other than measurement and discretization error. 
Note that all error, of whatsoever kind, will lead to 
empirical estimates B<1. 

If the empirical (CIB1) confidence intervals include B=1, 
the broad confidence intervals (CIB2) around a theoretical 
expectation of B=1 would also include the empirical 
contingency – it is a matter of judgement based on an 
understanding of contributing error whether the hypothesis 
B=1 is supported given non-zero error. In general B=1 
should be achieved empirically for a true correlation 
unless there are measurement or labelling errors that are 
excluded from the informedness model, since B<1 is 
always significantly different from B=1 by definition 
(there is 1- B=0 unaccounted variance due to guessing).  

None of the traditional confidence or significance 
measures fully account for discretization error (N<8K) or 
for the distribution of margins, which are ignored by 
traditional approaches. To deal with discretization error 
we can adopt an sse estimate that is either constant 
independent of B, such as the unweighted arithmetic mean, 
or a non-trivial function that is non-zero at both B=0 and 
B=1, such as the weighted arithmetic mean which leads to: 

CIB1= X ·[1-2 |B|+2B2]  / √[2 E· (N-1 )]    (66) 

CIM1= X · [1-2 |B|+2B2]  / √[2 E· (N-1 )]   (67) 

CIC1= X ·[1-2 |B|+2B2]  / √[ 2 E· (N-1 )]   (68) 

Substituting B=0 and B=1 into this gives equivalent CIs 
for the null and full hypothesis. In fact it is sufficient to use 
the B=0 and 1 confidence intervals based on this variant 
since for X=2 they overlap at N<16. We illustrate such a 
marginal significance case in Fig. 6, where the large 
difference between the significance estimates is clear with 
Fisher showing marginal significance or better almost 
everywhere, G2 for B>~0.6, χ2 for B>~0.8. >~95% of 
Bookmaker estimates are within the confidence bands as 
required (with 100% bounded by the more conservative 
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lower band), however our B=0 and B=1 confidence 
intervals almost meet showing that we cannot distinguish 
intermediate B values other than B=0.5 which is marginal. 
Viz. we can say that this data seems to be random (B<0.5) 
or informed (B>0.5), but cannot be specific about the level 
of informedness for this small N (except for B=0.5±0.25). 

If there is a mismatch of the marginal weights between the 
respective prevalences and biases, this is taken to 
contravene our assumption that Bookmaker statistics are 
calculated for the optimal assignment of class labels.  Thus 
we assume that any mismatch is one of evenness only, and 

thus we set the Evenness factor E=PrevG*BiasG*K2. Note 
that the difference between Informedness and Markedness 
also relates to Evenness, but Markedness values are likely 
to lie outside bounds attached to Informedness with 
probability greater than the specified beta . Our model 
can thus take into account distribution of margins provided 
the optimal allocation of predictions to categories 
(labelling) is assigned. 

The multiplier X shown is set from the appropriate 
(inverse cumulative) Normal or Poisson distribution, and 
under the two-tailed form of the hypothesis, X=1.96 gives 
alpha , beta  and gamma of 0.05.  A multiplier of 
X=1.65 is appropriate for a one-tailed hypotheses at 0.05 
level. Significance of difference from another model is 
satisfied to the specified level if the specified model 
(including null or full) does not lie in the confidence 
interval of the alternate model. Power is adequate to the 
specified level if the alternate model does not lie in the 
confidence interval of the specified model. Figure 7 
further illustrates the effectiveness of the 95% empirical 
and theoretical confidence bounds in relation to the 
significance achievable at N=128 (K=5). 

6 Exploration and Future Work 

The Bookmaker Informedness measure has been used 
extensively by the AI Group at Flinders over the last 5 
years, in particular in the PhD Theses and other 
publications of Trent Lewis (2003ab) relating to 
AudioVisual Speech Recognition, and the publications of 
Sean Fitzgibbon (2007ab) relating to EEG/Brain 
Computer Interface. Fitzgibbon was also the original 
author of the Matlab scripts that are available for 
calculating both the standard and Bookmaker statistics 
(see footnote on first page). The connection with DeltaP 
was discovered by Richard Leibbrandt in the course of his 
PhD research in Syntactic and Semantic Language 
Learning. We have also referred extensively to the 
equivalence of Bookmaker Informedness to ROC AUC, as 
used standardly in Medicine, although AUC has the form 
of an undemeaned probability, and B is a demeaned 
renormalized form. 

The Informedness measure has thus proven its worth 
across a wide range of disciplines, at least in its 
dichotomous form. A particular feature of the Lewis and 
Fitzgibbon studies, is that they covered different numbers 
of classes (exercising the multi-class form of Bookmaker), 
as well as a number of different noise and artefact 
conditions.  Both of these aspects of their work meant that 
the traditional measures and derivatives of Recall, 
Precision and Accuracy were useless for comparing the 
different runs and the different conditions, whilst 
Bookmaker gave clear unambiguous, easily interpretable 
results which were contrasted with the traditional 
measures in these studies. 

The new χ2
KB, χ2KM and χ2

KBM, χ2XB, χ2XM and χ2XBM 
correlation statistics were developed heuristically with 
approximative sketch proofs/arguments, and have only 
been investigated to date in toy contrived situations and 

Figure 6. Illustration of significance and confidence. 
110 Monte Carlo simulations with 11 stepped expected 

Informedness levels (red line) with Bookmaker-estimated 
Informedness (red dots), Markedness (green dot) and 

Correlation (blue dot), with significance (p+1) calculated 
using G2, X2, and Fisher estimates, and confidence bands 
shown for both the theoretical Informedness and the B=0 
and B=1 levels (parallel almost meeting at B=0.5). The 
lower theoretical band is calculated twice, using both 
CIB1 and CIB2. Here K=4,  N=16, X=1.96, α=β=0.05. 
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the Monte Carlo simulations in Figs 3 to 5. In particular, 
whilst they work well in the dichotomous state, where they 
demonstrate a clear advantage over χ2 traditional 
approaches, there has as yet been no no application to our 
multi-class experiments and no major body of work 
comparing new and conventional approaches to 
significance.  Just as Bookmaker (or DeltaP') is the 
normative measure of accuracy for a system against a Gold 
Standard, so is χ2

XB the proposed χ2 significance statistic 
for this most common situation.  For the cross-rater or 
cross-system comparison, where neither is normative, the 

BMG Correlation is the appropriate measure, and 
correspondingly we propose that χ2

KBM is the appropriate 
χ2 significance statistic. To explore these thoroughly is a 
matter for future research. However, in practice we tend to 
recommend the use of Confidence Intervals as illustrated 
in Figs 4 and 5, since these give a direct indication of 
power versus the confidence interval on the null 
hypothesis, as well as power when used with confidence 
intervals on an alternate hypothesis.  

Furthermore, when used on the empirical mean 
(correlation, markedness or informedness), the overlap of 
the interval with another system, and vice-versa, give 
direct indication of both significance and power of the 
difference between them. If a system occurs in another 
confidence interval it is not significantly different from 
that system or hypothesis, and if it is it is significantly 
different.  If its own confidence interval also avoids 
overlapping the alternate mean this mutual significance is 
actually a reflection of statistical power at a 
complementary level. However, as with significance tests, 
it is important to avoid reading to avoid too much into 
non-overlap of interval and mean (not of intervals) as the 
actual probabilities of the hypotheses depends also on 
unknown priors. 

Thus whilst our understanding of Bookmaker and 
Markedness as performance measure is now quite mature, 
particularly in view of the clear relationships with existing 
measures exposed in this article, we do not regard current 
practice in relation to significance and confidence, or 
indeed our present discussion, as having the same level of 
maturity and a better understanding of the significance 
and confidence measures remains a matter for further 
work, including in particular, research into the multi-class 
application of the technique, and exploration of the 
asymmetry in degrees of freedom appropriate to alpha  
and beta , which does not seem to have been explored 
hitherto. Nonetheless, based on pilot experiments, the 
dichotomous χ2

KB family of statistics seems to be more 
reliable than the traditional χ2 and G2 statistics, and the 
confidence intervals seem to be more reliable than both. It 
is also important to recall that the marginal assumptions 
underlying the both the χ2 and G2 statistics and the Fisher 
exact test are not actually valid for contingencies based on 
a parameterized or learned system (as opposed to 
naturally occurring pre- and post-conditions) as the 
different tradeoffs and algorithms will reflect different 
margins (biases). 

It also remains to explore the relationship between 
Informedness, Markedness, Evenness and the Determinant 
of Contingency in the general multiclass case.  In 
particular, the determinant generalizes to multiple 
dimensions to give a volume of space that represents the 
coverage of parameterizations that are more random than 
contingency matrix and its perverted forms (that is 
permutations of the classes or labels that make it 
suboptimal or subchance). Maximizing the determinant is 
necessary to maximize Informedness and Markedness and 
hence Correlation, and the normalization of the 
determinant to give those measures as defined by (42-43) 

Figure 7. Illustration of significance and confidence. 
110 Monte Carlo simulations with 11 stepped expected 

Informedness levels (red line) with Bookmaker-estimated 
Informedness (red dots), Markedness (green dot) and 

Correlation (blue dot), with significance (p+1) calculated 
using G2, X2, and Fisher estimates, and confidence bands 
shown for both the theoretical Informedness and the B=0 
and B=1 levels (parallel almost meeting at B=0.5). The 

lower theoretical band is calculated twice, using both CIB1 
and CIB2. Here K=5,  N=128, X=1.96, α=β=0.05. 
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defines respective multiclass Evenness measures 
satisfying a generalization of (20-21). This alternate 
definition needs to be characterized, and is the exact form 
that should be used in equations 30 to 46. The relationship 
to the discussed mean-based definitions remains to be 
explored, and they must at present be regarded as 
approximative. However, it is possible (and arguably 
desirable) to instead of using Geometric Means as outlined 
above, to calculate Evenness as defined by the 
combination of (20-22,42-43). It may be there is an 
simplified identity or a simple relationship with the 
Geometric Mean definition, but such simplifications have 
yet to be investigated. 

7 Monte Carlo Simulation 

Whilst the Bookmaker measures are exact estimates of 
various probabilities, as expected values, they are means 
of distributions influenced not only by the underlying 
decision probability but the marginal and joint 
distributions of the contingent variables. In developing 
these estimates a minimum of assumptions have been 
made, including avoiding the assumption that the margins 
are predetermined or that bias tracks prevalence, and thus 
it is arguable that there is no attractor at the expected 
values produced as the independent product of marginal 
probabilities. For the purposes of Monte Carlo simulation, 
these have been implemented in Matlab 6R12 using a 
uniform distribution across the full contingency table, 
modelling events hitting any cell with equal probability in 
a discrete distribution with K2-1 degrees of freedom (given 
N is fixed). In practice, (pseudo-)random number will not 
automatically set K2 random numbers so that they add 
exactly to N, and setting K2-1 cells and allowing the final 
cell to be determined would give it o(K) times the standard 
deviation of the other cells. Thus another approach is to 
approximately specify N and either leave the number of 
elements as it comes, or randomly increment or decrement 
cells to bring it back to N, or ignore integer discreteness 
constraints and renormalize by multiplication. This raises 
the question of what other constraints we want to maintain, 
e.g. that cells are integral and non-negative, and that 
margins are integral and strictly positive. 

An alternate approach is to separately determine the 
prediction bias and  real prevalence margins, using a 
uniform distribution, and then using conventional 
distributions around the expected value of each cell. If we 
believe the appropriate distribution is normal, or the 
central limit applies, as is conventionally assumed in the 
theory of χ2 significance as well as the theory of  
confidence intervals, then a normal distribution can be 
used. However, if as in the previous model we envisage 
events that are allocated to cells with some probability, 
then a binomial distribution is appropriate, noting that this 
is a discrete distribution and that for reasonably large N it 
approaches the normal distribution, and indeed the sum of 
independent events meets the definition of the normal 
distribution except that discretization will cause deviation. 

Monte Carlo simulations have been performed in Matlab 
using all the variants discussed above. Violating the 
strictly positive margin assumption causes NaNs for many 
statistics, and for this reason this in enforced by setting 1s 
at the intersection of paired zero-margin rows and columns, 
or arbitrarily for unpaired rows or columns. Another way 
of avoiding these NaN problems is to relax the 
integral/discreteness assumptions. Uniform margin-free 
distribution, discrete or real-valued, produces a broader 
error distribution than the margin-constrained distributions.  
It is also possible to use so-called copula techniques to 
reshape uniformly distributed random numbers to another 
distribution. In addition Matlab’s directly calculated 
binornd  function has been used to simulate the binomial 
distribution, as well as the absolute value of the normal 
distribution shifted by (plus) the binomial standard 
deviation. No noticeable difference has been observed due 
to relaxing the integral/discreteness assumptions except 
for disappearance of the obvious banding and more 
prevalent extremes at low N, outside the recommended 
minimum average count of 5 per cell for significance and 
confidence estimates to be valid. On the other hand, we 
note that binornd  produced unexpectedly low means 
and always severely underproduced before correction1. 
This leads to a higher discretization effect and less 
randomness, and hence overestimation of associations. 
The direct calculation over N events means it takes o(N) 
times longer to compute and is impractical for N in the 
range where the statistics are meaningful. The binoinv  
and related functions ultimately use gammaln to calculate 
values and thus the copula technique is of reasonable order, 
its results being comparable with those of absolute normal. 

Figures 2, 3, 5, 6 and 7 have thus all been based on 
pre-marginalized simulations with discretized absolute 
normal distributions using post-processing as discussed 
above to ensure maintenance of all constraints, for K=2 to 
102 with expected value of N/K = 21 to 29 and expected B 
of 0/10 to 10/10, noting that the forced constraint process 
introduces additional randomness and that the relative 
amount of correction required may be expected to decrease 
with K. 

8 Conclusions 

The system of relationships we have discovered is 
amazingly elegant. From a contingency matrix in count or 
reduced form (as probabilities), we can construct both 
dichotomous and mutually exclusive multiclass statistics 
that correspond to debiased versions of  Recall and 
Precision (28,29). These may be related to the Area under 
the Curve and distance from (1,1) in the Recall-based ROC 
analysis, and it’s dual Precision-based method. There a 
further insightful relationships with Matthews Correlation, 
with the determinant of either form of the matrix (DTP or 
dtp ), and the Area of the Triangle defined by the ROC 
point and the chance line, or equivalently the Area of the 
Parallelogram or Trapezoid defined by its perverted forms. 

                                                        
1 The author has since corrected this initialization bug in Matlab. 
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Also useful is the direct relationship of the three 
Bookmaker goodness measures (Informedness, 
Markedness and Matthews Correlation) with both standard 
(biased) single variable significance tests as well as the 
clean generalization to unbiased significance tests in both 
dependent (low degree of freedom) and independent (high 
degree of freedom) forms along with simple formulations 
for estimating confidence intervals. More useful still is the 
simple extension to confidence intervals which have the 
advantage that we can compare against models other than 
the null hypothesis corresponding to B=0.  In particular we 
also introduce the full hypothesis corresponding full 
informedness at B=1 mediated by measurement or 
labelling errors, and can thus distinguish when it is 
appropriate to recognize a specific value of partial 
informedness, 0<B<1 (which will eventually be the case 
for any association that isn’t completely random, for large 
enough N).. 

It is also of major importance that the measures are easily 
generalized to multiclass contingency tables. The 
multiclass form of the Informedness measure has been 
used extensively as the primary goodness measure in two 
PhD theses in different areas (Matlab scripts available), 
and in Psychology the pair of dichotomous measures, 
under the names DeltaP and DeltaP’ have been shown 
empirically to be normative measures of human 
associative performance. 

Most encouraging of all is how easy the techniques are to 
teach – they are taught routinely to Honours students and 
used routinely by all students in our lab, and they directly 
give probabilities regarding the effectiveness of the system. 
The dichotomous forms are trivial: Informedness is simply 
Recall plus Inverse Recall minus 1, and Markedness is 
Precision plus Inverse Precision minus 1. Correlation is 
their product. Evenness is the square of the Geometric 
Mean of Prevalence and Inverse Prevalence and/or Bias 
and Inverse Bias. χ2 testing is then just multiplication and 
confidence intervals a matter of taking a squareroot. 

There is also an intuitive relationship between the 
unbiased measures and their significance and confidence, 
and we have sought to outline a rough rationale for this, 
but this remains somewhat short of formal proof of 
optimal formulae defining close bounds on significance 
and confidence. 
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