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Parallel Unification
The research discussed in this presentation arises in the context of Parallel Theorem Proving and Logic
Programming. These paradigms amount to searching a tree in which a path from root to leaf represents a set
of choices (implemented as unification) identifying a potential solution.

Examining alternative paths in parallel exploits so-calledOR-parallelism whilst searching at different levels
in parallel amounts toAND-parallelism. In addition, it is possible to parallelize the unification process, or a
lazy evaluation involving delayed unification or bookkeeping [8].

Interestingly, unification has proven a problem both for sequential and parallel implementation. The standard
unification algorithms used in Prolog systems are not sound, and the straightforward fixes lead to exponential
execution time. There are, however, linear and near-linear time sound sequential algorithms. Unfortunately,
even the unsound algorithms don’t parallelize well, and exhibit worst case linear performance.

This has lead to parallelization of unification being eschewed, although the pathological cases are rare. But
unification has usefully been parallelized [1] and the pathological cases have been characterized [8].

Parallel Hardware
Theoretical characterization of the complexity of parallel unification and reasoning systems rends to rely
implicitly or explicitly on a PRAM model. The quicksort algorithm is a standard Prolog demonstration with
expectedN logN sequential performance. A simulated parallel reasoning system gave logN performance with
its implicit PRAM model and a PRAM algorithm was derived from it [9]. Although there are now several
such O(logN) algorithms around (and the derived QuickSort and RadixSort algorithms have amongst the
lowest constants), there are actually O(log2N) algorithms which will execute faster in any achievable
implementation! Ironically, there are alsoΟ(1) algorithms [2]which are even worse!! We ignore these.

The paper will discuss what these orders really mean and the factors which are hidden by the current models
of parallelism. Indeed, the serial characterizations also hide many constants and are not truly scalable either!
We characterize algorithms in terms of the memory bandwidth or buswidth,w, and note that a general sorting
task involvingN items will scale only whilew >= logN —with PRAMor Sequential RAM. With a constantw
we can achieve O(wN) bit-level cost giving O(wlog2N) bit-level delay [3]. Note that any parallel architecture
whose connectivity and bandwidth doesn’t scale as logN will incur multiplicative factor(s) of logN.

Indeed, it has long been observed that sorting networks provide the most efficient known solution to the
PRAM’s arbitrary permutation problem [3], avoiding the typical probabilistic routing or blocking behaviour
[4,6]. Furthermore, with Batcher’s bitonic sort an O(log2N) bit-level latency may be realized (viz. measured
in terms of gate-delays). Although there are claims that o(Nlog2N) hardware complexity can be reduced to
o(NlogN), these assume a constant bandwidthw >= logN [7], and thus hide another factor of logN and don’t
change the order of the gate count. Suprisingly, parallel comparisons actuallyslow bitonic sort by logN in
terms of gate-delays, as they can be pipelined in aserial implementation.

Considering the limiting speed of light and the constant size of processing elements, path-lengths of o(N1/3)
provide a hard physical limitation, which is significant once propagation times and processor clock cycles are
of the same order, such as when 300Mhz processors communicate at 300Mm/s in a 1m cube. Gate fanins and
fanouts which are functions ofN [5] should be viewed with suspicion, and a sound definition of bit-level cost
and delay makes them constant. Butsequential machines face these limits too...
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