INTERNAL MODEL CONTROL USING
RECURRENT NEURAL NETWORKS
FOR NONLINEAR DYNAMIC SYSTEMS

Yan Li, David Powers and Peng Wen

School of Informatics and Engineering
The Flinders University of South Australia
GPO Box 2100, Adelaide, SA 5001, Australia

Abstract: This paper presents a control method using Recurrent Neural Networks
(RNNs) in an Internal Model Control (IMC) framwork, and demonstrates their
effectiveness of modelling and control for nonlinear dynamic systems. Unlike existing
neural IMC design methods, the proposed control scheme consists of two stages.
The first stage is that using two same structure of RNNs through iterative learning
techniques to obtain a desired control signal to the unknown nonlinear systems. Then
a RNN is used to generate the desired control signal within IMC structure. The
algorithm for the RNNs is a real time iterative learning algorithm based on two-
dimensional (2D) system theory. The simulation results demonstrate the proposed
control method can drive unknown systems to follow the desired trajectories very

well.

Keywords: Nonlinear Control Systems, Neural Networks, Nonlinear
Models, Two-dimensional systems, Multi-input/multi-output

1. INTRODUCTION

Much success has been achieved in the use
of RNNs for identification and control in re-
cent years. Many publications (Narendra and
Parthasarthy, 1991; Chow and Fang, 1999; Wen et
al., 1996), have proved that RNNs are more pow-
erful for nonlinear dynamic system since the ar-
chitectures of RNNs themselves are presented by
nonlinear dynamic system. Many approaches to
train RNNs to handle time-varying input/output
have been suggested or investigated by control
researchers. Among those, Chow and Fang (Chow
and Fang, 1999) developed a real-time iterative
learning algorithm which derived by means of two-
dimensional(2D) system. The algorithm is differ-
ent from conventional algorithms that employ the
steepest optimisation to minimise a cost function.
An RNN using the algorithm can approximate
any trajectory with time-varying weights. With
their ability to deal effectively with time-varying

input/output, recurrent neural networks are at-
tractive for modelling and adaptive control design.

The iterative learning algorithm is employed to
train our RNNs in this paper, and internal model
control (IMC) is used to provide a general frame-
work for nonlinear system control. IMC is signif-
icant (Li et al., 1996) because the stability and
robustness properties of the structure can be anal-
ysed and manipulated in a transparent manner,
especially for non-linear systems. The proposed
control scheme consists of two stages. The first
stage uses two identical RNN structures through
iterative learning techniques to obtain a “desired”
control signal to the unknown nonlinear systems.
After the desired control signal is obtained, One of
the RNNs is used to generate the desired control
signal within an internal model control structure.
The simulation results in this paper demonstrate
the control method can drive unknown systems to
follow the desired trajectories very well.

2. THE ALGORITHM

The architecture of the RNNs used in this paper is
fully connected. Nodes in the RNNs are generally
classified into three categories (instead of layers):
input, output and hidden nodes. In this paper,
we use the term “processing nodes” to represent
all the output and hidden nodes. There are two
sets of synaptic connections in RNNs. The first
set of connection links between the input and
the processing nodes. Their weights constitute the
inter-weights matrix Wz = {w;}. The weight
w;j(t) Vi € U and j € I (where U and I are the
set of processing and input nodes, respectively)
denotes the strength of the connection from the
jt* input node to the " processing node, at
time ¢. The second set of connections form the
feedback paths. Therefore, each processing node is
connected to all other processing nodes, including
itself. Their weights constitute the intra-weight
matrix W1 = wj;. Similarly, wj;(¢) denotes the
strength of the connection from the j** processing
node to the " processing node (Vi,j € U), at
time ¢. Figure 1 shows the topology of RNNs.

Outputs

I -
O O*°** 000

t e

O(T)O ..T. O?O

Inputs

Wi={w*(0}

Wo={wii(D)}

Fig. 1. The topology of RNNs

Let {y(¢t)} denote the outputs of the process-
ing nodes and {u(t)} denote the external inputs.
Then, their state-space nonlinear dynamics of the
RNN is presented in the following matrix form:

y(t +1) = f[Wi(t)y(t) + Wa(t)u(t)] (1)

with initial value y(0) = yo.
where

y(t) = (1(t),y2(t), - yn ()" € R,
u(t) = (ur(t),ua(t), ..., um (t))¥ € R™,
Wl(t’) € Ran7

W2 (t) € Ran

f(.) is a vector of a nonlinear activation function,

f() = (fl(')7f2(‘)7 "'7fn('))T7
fi()=f(h),i=1,2,...,n

(h1,ha,.o; hn)T = W1 (t)y(t) + Wa(t)u(t).
The main objective of the learning algorithm is
to minimize the error function

B(t)=5 > o)

kET(t)

=2 Y - mP

kET(t)
(2)

through updating the weight matrices w;; and
wy;. Here, E(t) denotes the network error at time
t. The term eg(t) represents the error between
the desired output dj(t) and actual yi (), where k
belongs to the set T(t) of the output nodes with
teaching status, at time ¢. ex(t) = 0 when % is a
hidden nodes.

In this paper, we use Chow and Fang’s (Chow and
Fang, 1999) iterative learning algorithm based on
2-D system theory for training RNNs. According
to the idea of real-time iterative learning, an al-
gorithm based on two-dimensional expression up-
dates the connection weights to drive the output
of the network to track the desired output within
a required tolerance. The learning rule can be
expressed as follows:

AW(t,1) =C Y(t)[d(t +1) —y(t +1,1—1)]

[x®)"x(®)] ' x(®)”
=Cle(t+1,1-1) [xT(t)x(t)*] x(t)T
®3)
where
CL(t) = [diag(f'(€), F'(€)s - [N,
£=(&¢€.,9)" = W(t,1-1)x(t)

W(t,1)=W(t,1-1)+ AW(t,1),l =1,2,..., k.
Therefore, we can obtain

yit+1)=y(t+ 1,k
= f* [W(t, ke)x(t)]
= [W()x(t)]

It is clear that the weights of an RNN are adap-
tively determined under the real-time algorithm.
Comparing Williams and Zipser’s (Williams and
Zipser, 1989) algorithm with (3), this real-time it-
erative learning algorithm has a dynamic learning
rate of C~1(t) [x(t)Tx(t)]_l. In this paper, the
algorithm is applied to model and control several
type of nonlinear processes.

3. INTERNAL MODEL CONTROL USING
RECURRENT NEURAL NETWORKS

In this section, internal model control scheme is
employed for RNNs with the real-time algorithm.
There are two stages within the control scheme
according to characteristics of IMC. The first step
is system identification by an RNN model and
the second step is neural control design based
on the model inverse approach. Figure 2 shows
the structure of the internal model control using
RNNs.

| Model Reference

Desired Control | lterative Learning
Signal Control
l Noise
e(t) uft) — yalt)
, , Of?m Nonligar Plant R
Cofroller (P)

\% ol
Modellmg)) —

Fig. 2. The Internal Model Control Using RNNs

Stage one is an on-line identification and iterative
learning control to obtain a desired control signal
to the unknown nonlinear system. The idea of
learning control is to utilize two RNNs, based
on the same network architecture, to approximate
the nonlinear system responses and to mimic the
desired system response output. Then the desired
control signal can be obtained by contrasting the
two RNNs and the current system output and
control input.

Stage 2: A recurrent neural controller is used
to generate the desired control signal to the un-
known nonlinear plant in an internal model con-
trol framework. The IMC structure is now well
known and has been shown to underlie a num-
ber of control design techniques of apparently
different origin. A unifying review of the IMC-
type schemes was first presented by Garcia and
Morari (Garcia and Morari, 1982). IMC has been

shown to have a number of desirable properties;
a detailed analysis has been given by Morari and
Zafiriov (Morari and Zafiriov, 1989).

4. THE SIMULATION RESULTS

The simulations for several unknown nonlin-
ear dynamic systems using the proposed control
scheme are given in this section. The results have
demonstrated that the proposed control method
can drive systems to follow the desired trajectories
with high accuracy.

Ezxample 1: Consider the unknown system which
is described by the difference equation:

yp(k +1) = flyp(k),yp(k — 1)] +u(k) (5)
where the function

f[yp(k)ayp(k - 1)]

_ Yp(R)yp(k — 1)(yp(k) +2.5)
o 1+y2(k) +yR(k-1)

(6)

is assumed to be unknown. A reference model is
described by the second-order difference equation

ya(k +1) = 0.2yq(k) + 0.2yqa(k — 1) + r(k)(7)
where r(k) is a bounded reference input:

r(t) = 0.1sin(2%t)

According to the proposed control scheme, At
first, two same RNNs are trained to get the desired
control signal corresponding to the desired output.
Figure 3 shows the output of the model and the
output of the plant during the training. The track-
ing error is less than 0.001. The corresponding
desired control signal is shown in Figure 4.

After the desired control signal is obtained, the
RNN controller is trained on-line and the output
is obtained using the internal model control struc-
ture. Figure 5 shows the control performance.

Example 2: The unknown nonlinear system is
described by the following equation

w4 1) = (D) @
The desired output is
ym(k + 1) = 0-1ym(k) + T(k) (9)

Assume the external input is a square wave as
shown in Figure 6 (the dot line). According to the

»»»»»» The desired output
—— The actual output
—.— Theinput

0.2
0 1 2 3 4 5(S)

Fig. 3. The desired output and the output of the
plant at stage 1 for Example 1

0.15 T T T T

f 2 3 4 5(5)

Fig. 4. The desired control signal for Example 1

v The desired input The actual output

2 8 4 5 5 1 80
Fig. 5. The desired output and the actual output
for Example 1

proposed control scheme, the desired control sig-
nal and the actual control signal which are shown
in Figure 6 are obtained. The desired output and
output of the plant obtained by internal model

control are shown in Figure 7.

1 T
The actual control signal
051
ol \The actual
control signal
_0 X 5 1 1
0 5 10 15

Fig. 6. The desired control signal, the actual
control signal and external input for Ezample
2

0.8
0.7
0.6
05
04r é 5 T
03} L BN L_
........ The desired output The actual output
0.2 . :
0 5 10 5

Fig. 7. The desired output and actual output for
Example 2

Figure 8 is the performance with noise. It is ob-
served that the outputs of the plants can track
the desired trajectories very well. In Ezample 1
and 2, the structure of all the RNNs is one input,
one hidden and one output node. They are all
minimal networks. It is investigated that a small
RNNs can implement a task as that a large or
possibly infinite feedforward system does.

Ezxample 3 The above two examples are SISO
plants. In this example, an MIMO plant which
is described by the following equation,

yp1 (k)
Up1 (k + 1) _ 1+ pQ(k) U1 (k)
[Z/p2(k' +1) :| - ypl(kg)jym (k) + [U2(k)] (10)
1+ y2, (k)

0.9
0.8} M
0.7
0.6F

051

0.4}

031

0.2 ' ;
0 5 10 15

Fig. 8. The performance with noise for Exzample 2

The output of the reference model is

[t D] = [52] + [Jaw

Here, the external inputs have the form of

® i (27rk)
(k)| _ | e (12)
[rg(k)] cos(%)

The desired control signals with respect to the
desired outputs and the actual control signals
Ua1,Uq2 and U;p, U;s are shown in Figure 9 and 10.

S S S S
Fig. 9. The actual control signal U;; and the
desired control signal Uy for Example 3

Figure 11, 12 show the final control results, two
outputs Yy1, Y2 and the desired outputs Yy1, Ygo.
In this example, the structure of the two RNNs
consists of two input nodes, two hidden nodes and
two output nodes. It is observed that the errors
between the actual outputs of the plant and the
desired outputs are larger than those in the SISO

2 3+ 5 6 1 8
Fig. 10. The actual control signal U;» and the
desired control signal Ugs for Ezample 3

0.5
0.4F ‘ The actual output =
0.1

ot
-0.1F
-0.2r
-0.3F

0.4}

‘ :“I'he desired outp . . /
1 2 3 4 5 6 7 8

-0.5
0

Fig. 11. The output Yp; of the plant and the
desired output for Example 3

~ The desired output..,

VT aetual oulpur%‘"""

2 3+ 5 51 @
Fig. 12. The output Yp» of the plant and the
desired output for Example 3

situations. The main reason for this is that the
errors between each of the two actual outputs and
their corresponding desired outputs cannot reach
the specified error tolerance simultaneously.

5. CONCLUSION

The paper presents a control method of using
RNNs in an IMC framwork, and demonstrates
their effectiveness for modelling and control of
nonlinear dynamic systems. Unlike existing neural
IMC design methods, the proposed control scheme
consists of two stages. The first stage uses two
same structure of RNNs through iterative learn-
ing techniques to obtain a desired control signal
to the unknown nonlinear systems. Then one of
the RNNs is used to generate the desired con-
trol signal within IMC structure. The algorithm
for the RNNs is a real time iterative learning
algorithm based on two-dimensional (2D) system
theory. The simulation results for both the SISO
and MIMO situations demonstrate the proposed
control method can drive unknown systems to
follow the desired trajectories very well.

6. REFERENCES

Chow, T.W.S. and Y. Fang (1999). A recurrent
neural-network-based real-time learning con-
trol strategy applying to nonlinear systems
with unknown dynamics. IEEE Transactions
on industrial electronics 45(1), 151-161.

Garcia, C. and M. Morari (1982). Internal model
control-1: A unifying review and some new
results. pp. 308-326.

Li, Y., A. B. Rad and Y K Wong (1996). Model
based control using artificial neural network.
Proceedings of the 1996 IEEE international
symposium on intelligent control 1, 15-18.

Morari, M. and E. Zafiriov (1989). Robust Process
Control. Prentice-Hall.

Narendra, K.S. and K. Parthasarthy (1991). Gra-
dient methods of the dynamical systems con-
taining neural networks. IEEEE Transactions
on Neural Networks 2(2), 7-21.

Wen, P., C.K. Ng and Y. Li (1996). Dynamic lin-
ear square backpropagation algorithm for re-
current neural networks. The Fourth Inter-
national Conference on Control, Automation,
Robotics and Vision 1, 3-6.

Williams, R. and D. Zipser (1989). A learning
algorithm for continually running fully re-
current neural networks. Neural Computation
1, 270-280.

