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Introduction

The computer and the information age have made an indelible impression on how we study
Linguistics and Psychdogy, and aur increasing understanding of information processng by
computers has led to both analogies and theories of human information processing. From the
beginning o Al, computational models of human neural and information processng, of
memory, learning and language, have been developed nd only within Al but within
Linguistics and Psychdogy. As the various communities garted to interact with each aher,
Cognitive Science emerged as an umbrella field in which Linguistics, Psychadlogists,
Computer Scientists and ahers work together to develop theories of human information
processng.

At the core of Cogritive Science is the principle that theories of perception and cognition, and
in particular language and learning, must be computationally viable. That is, the rules,
processes and mechanisms proposed should be capable of effedive realization by a computer
of reasonable size and power, and preferably be capable of mapping to a neural mode
consistent with known neuroanatomy and neurophysiology: these computer implementations
should be capable of generating predictions which are verifiable using empirical techniques
fromany or all of the cogritive and behavioural sciences.

Experiments in the unsupervised machine learning o syntax and semantics using a physical
or simulated ‘baby’ robot, call into question a number of widely held assumptions, and in
particular the following: that phorology, morphology and syntax are distinct; that syntax is
independent of semantics and ontology; that there is a universal grammar; that whil e lexicon
and gammar are finite language is infinite; that semantics and the lexicon can be acquired by
learning but grammar cannot; that grammaticality is absolute and probabilities pertain to
performance, not competence; and that closed classes/functional forms are learned late. In the
shift of focus from language as a dosed system to the complex interreationships that
constrain its acquisition we see than an adequate identification o the interactional ‘ context’ of
learning is fundamental to formal analysis of learnabil ity.

What is Language?

The starting paint for a discusson of language acquisition must be a definition o what we
mean by language and what we mean by acquisition. A robot baby is adopted as our model so
that we can explore the totality of the language and ontology learning experience, and
suggests a broad scope for what we understand as language acquisition. Our goal is to see
what can be learned using the same mechanisms both for the different individual modalities
and for the learning of crossmodality associations. Rather than arbitrarily assuming that
different mechanisms are involved, we adopt a parsimonious approach where we eplore
what can be achieved with a minimum of assumptions, and no specifically linguistic
asumptions.

In ather words, we are see&king to devise a situation in which language, and language learning
mechanisms, can emerge. We avoid words like ' evolution and ' development' as much as
possgble because we distinguish between the evolution of a species and the development of an
individual. When we use these words in relation to language our choice of terminology brings



with us the baggage associated with the original framework. However, if we talk about the
emergence and conventionalization of language, we can avoid this confusion: the social
group-learning processis quite different from the evolution of spedfic organs or capabilities
in the species or the maturational development of spedfic organs in the individual. The
mechanisms we are eamining are those invoved in the sef-organization o a
perceptual/conceptual ontology and the learning of natural and social laws. Ancther chapter
in this volume focuses gecifically on therole of attention sharing as a basis for more dficient
development of appropriate linguistic associations, as well as the role of shared ontological
belief models as a basis for communication [Kozima and Ito, 2007].

In this chapter we wil | first make a quick tour of some of the impli cit and explicit assumptions
which we eplicitly eschew in adopting cur focus on sdf-organization and emergence,
reviewing them both from a theoretical perspedive and in terms of computational/robot baby
experiments that throw further light on their validity.

Assumptions questioned in our robot baby paradigm

? phonology, morphology and syntax are distinct

Much of linguistics, and even more of computational linguistics, is focussed on the structure
of language. Indeed, like the world aut there, our written and spoken language is perceived
through aur senses. It is easy to examine the structure of a sound a an utterance in the same
way as we &amine the structure of an dbjed or avisual scene. Indeed grammatical analysis
has often been used as a metaphor in the description and analysis of non-lingustic
phenomena. In all cases, there are raw percepts, which are evidently organized into features
and dher successvely higher order constructs that we give different names to.

The robot baby experiments directly examine the hypothesis of distinct linguistic modules by
exploring the same learning mechanisms in multiple modalities, across modalities, and at
multiple levels of processng. This gives rise to what would normally be called phorological,
morphological and syntactic rules and classes as part of a single uniform rule and class
formation process Speech code vedors form classes that correspord to phoremes and
vowels, phonemes or letters are organized into syllabic/morphemic units, and these are
organized into structures that we recogrize such as cliticized words, phrases and clauses
[Powers, 199; Schifferdecker, 1994. Note that word and sentence did not emerge as
recognizable constructions. We will look closer at these traditional units later.

? syntax and phonology are independent of semantics and ontology

We now turn to a similar but typically implicit assumption that semantics and ontology are
independent of syntax and phonaogy and employ different mechanisms. We employ aur
learning mechanisms both on the baby's sensory-motor inputs and autputs and to the learning
of assciations between modalities. The intermediate and higher level structures emergent
within a modality are available to guide the learning of phorological and syntactic structure,
aswell asfor the obvious ontological and semantic associations.

Clearly for the learning o meaning, associative connedions need to be formed that link the
aural (sensory) and aal (motor) forms of open-class words with multidimensional sensory-
motor grounded concept, and the robot baby clearly provides sope for exploring this kind of
learning. What is lessobvious is whether such multimodal associations are necessary for, or
even useful for, the development of syntax or for the interpretation and employment of
functional forms. The default assumption has been that syntax and semantics are totally
different kinds of beast, that need to be captured in totally diff erent kinds of ways.



But one of the big issues we need to deal with is how to direct our focus to the constructs that
are likely to form useful asociations, since there are many more that won't [Hogan, Diederich
and Finn, 1998 Kozima and Ito, 200]]. Prosodic cues also seem to be important in bring
focus to particular words or morphemes (e.g. nouns), but syntactic pointers (eg. articles)
seem to perform asimilar role. Here cues from ontology, syntax and phondogy all contribute
to the identification of a nuclear role, and conversdy the learning o semantic associations
involves learning the associations between the elements in focus in these different modalities.

When we give our robot baby both linguistic and non-linguistic input, we are providing
something that is essential for semantic information to be learned, but perhaps these
asciations are also necessry for the learning o syntactic categories. Suppose that the
outputs of different levels of processng o the various ensory systems were available to the
module, along with the phomological, morphological and syntactic structures we discover.
Now we have the right inputs to form a real grounded semantics that conreds the linguistic
inputs to the perceptual inputs — and indeed to the linguistic outputs and the motor outputs,
both diredly in a propriosensory form and indirectly through feedback through the eternal
perceptual system. But this is an empirical conclusion on the basis that certain structures
were sdf-organized from text or speech alonein aur early experiments. However the concept
of word and sentence did not emerge in these experiments - perhaps these are more semantic
than syntactic in aigin.

We should also note that our concept of semantics and ontology is not limited to the linguistic
and visual domains. Our multidimensional sensory-motor captures everything from smelly
nappies and sore bottoms to rumbling tummies and sticky faces. Our current robot baby
doesn't have these particular problems and so doesn't have the appropriate sensors, but it does
have the capabili ty of sensing touch, motion and aientation, and it can kick its arms and legs
andturnits head. It can make some appropriate nhon-linguistic responses too, and will turn its
head to the side you touch, and will see&k to maintain head arientation if you turn the body.
All this sensory-motor data needs to be organized by recognrizing ‘useful’ relationships, and
the relationships between all of our sensory-motor inputs and autputs gives rise to aur
ontological understanding o the world. This gives us a Piagetian higher order model in which
our inputs can be previously learned concepts and relationships as well as basic percepts. For
example, the learning d motion verbs involves recognizing both spatial and temporal
relationships.

The relationship between the complex patterns and associations we asciate with a dog and
the phondogical word /dog/ gives rise to the assciated ortology and semantics. The same
simple mechanisms will also associate them with the corresponding phoretic form. In aur
preliminary semantic experiments we have eperimented with learning with various degrees
of explicitnessof focus - to explore what is required to make appropriate asociations. Given
the word /dog/ has been heard in a significant proportion d the situations where a dog has
been seen o heard, it isanintegral part of the sensory-motor associations for dog and gven a
large enough corpus (which we are far short of at present) should be learnable on a purdy
statistical basis even with minimal direction o the attention. Note that even the visual and
motor associations relating to the lip movements invaved in saying/mimicking /dog/ are part
of thistotal sensory-motor associative plexus. Young children find it difficult to believe that a
rose by any ather name would smell as sveet; rather the name of an dojed is regarded as an
intrinsic part of the objed along with its sensory-motor attributes and functional roles (e.g.
that dogs get patted and can bite, that roses get sniff ed and can prick).

But there are many other associations with /dog/ and /rose/, and some of these have a
syntactic character: they will be preceded by /a/ or /the/ (or /thig/ or /that/ or /your/ or /my/) a
significant proportion o the time. This has actually defined a functional class Other words
that may precede /dog/ or /rose/ and intervene between the noun and its determiner/specifier,
include /brown/ and /red/, /noisy/ and /beautiful/ - which themselves will be asciated with



particular sets of scenes that build up an impresgon that clarifies their semantic scope. The
part whole analysis we apply to a visual scene, we can equally well apply to the phondogical
input. The role of movement and change in identifying distinct eements of a visual scene
carry over to the idea of contrast in identical environments in phondogy (CIE) and the idea of
paradigmatic variation in syntax. What is intrinsically different between recognzing the
relationship between a person and her head and arms and legs, and recognizing the
relationship between a clause and its verb and subjed and djed? They are al in the end
relationships among percepts as organized hierarchically into higher order concepts.

The robot baby experiments are examining the question of whether distinct mechanisms are
neaded for semantics/ontology and syntax/morphology/phondogy by applying the same
algorithms to ontological/visual tasks invalving static and dynamic concepts (concrete nouns,
action verbs and prepositions), to the learning o syntactic constructs, and to the learning of
semantic connedions between words and pictures [Hume, 1984 Chan, 1983; Powers, 1989
Homes, 1999. Many d our experiments resemble classcal concept learning, but our aim is
for a model that does not arbitrarily distinguish between syntax and semantics and ontology,
but rather uses general purpose asciative mechanisms bottom up, finding progressvely
more and more complex constructs and allowing elements from more and more distant
sources to be combined at the higher levels.

? there is a universal grammar

So let us come badk to the concept of a Universal Grammar. To the etent that we have
genetically and functionally similar anatomies and physiologies that give rise to gammar, if
grammar itself exists at all in its traditional sense, then there must be a universal grammar.
But we have seen that we do not need to assume separate linguistic modules either in the
sense of a language organ dstinct from our mechanisms for understanding our sensory-motor
world, or in the sense of specialized modules for syntax, morphdogy and phondogy.

The assumption d Universal Grammar has two parts, the universality of language within the
human spedes, and the claim that a particular kind of grammar has sme species-specific
organic redlization. The idea that grammar is mediated by rules has a long and pervasive
tradition, but is being increasingly questioned. In essence, rules assuume some kind o
clasdfication of words and then some kind of restriction on the reationships between these
resulting classes. But this kind o clasdfication and recogrition of reationships is exactly
what our neural models are goad at, and they don't usually invalve explicit rules and classes.
Isit posdble that the relationships are stored implicitly and the cascade of associations leads
totheimplicit sededion d appropriate choices and rgedion d inappropriate choices?

The generation of utterances seams quite different from the comprehension of utterances, but
linguistics finds it far easier to autopsy a crpus of utterances than to come to grips with the
processof language production. But just as grammar rules can work forwards and backwards,
so can asxciative networks of neurons. Language is not the only form of generated
behaviour, and again we can ask where the difference is between the mechanisms resporsible
for the different kinds of generative behaviour, linguistic and non-linguistic eg. giving a
recipe versus baking a cake.

One difficulty lies in the area of intentionality and conscious control of the generation
process We bdieve in free will and don’t like to think we are not responsible for our
behaviour, or that it is controlled by probabilistic forces beyond cur control. But whatever
form our goals and intentions take, or our unconscious habits and drives, all of these are
inputs into the process and influence the final form. In any case, the problem of which
sentence to generate from a lexicon and a grammar is even more of a problem for an
unadorned grammar. The robot baby is designed to have the ability to generate both language
and behaviour, and we can program in neals and drives, allowing us to explore thisissue too.



? grammar is recursive/context-free

An even more specific assumption that we should question is whether we truly make use of
recursive rules. Many issues smply disappear when we abandon reaursion. Thereis also an
important distinction to make between recursion and recurrence. When we apply reaursion,
we have to remember where to come bad to, and the more times we apply it, the more of
these return points we need to store. The evidence is clear that if recursion is used it must be
depth limited. Conversely, recurrence involves modifying a fixed memory, and iteration
implies a simple historylessprocessng loop. Thus we can loop while a condition is or is not
satisfied, and as a special case we can count the iterations within some range. In a recurrent
neural net, new inputs and recycled processed material are processed on each cycle, with
powerful results demonstrated in explaining various aspects of visual processng.

The robot baby experiments make no grammatical or linguistic assumptions, but are based on
neural, statistical and information theoretic models whose assumptions take the form of
choice of algorithm, parameters and dher constraints, such as the size of networks, hidden
layers and context/concept windows [Miller, 1956 Yngve, 1961 Entwisle and Groves, 1994.

? while lexicon and grammar are finite language is infinite

At any given time our personal lexicon and grammar are finite. They fit in our fixed capacity
heads and are based on aur finite experience. But our language is growing, new nouns and
verbs are being invented continuously, and innovation is a characteristic of language
behaviour. Thus, the noun and verb classes redlly are open classs. On the other hand the
grammar and the morphology of the language are the real characteristics of a particular
language, and the closed classes are closed amost by definition, because changing them
means we have a different language.

The question of whether a finite lexicon and grammar embodied in a finite head can generate
an infinite language has a simple mathematical answer. If we assume that the grammar is at
least context free we are implicitly assuming that once a recursive operation is complete
processng will return to a precise point in the previous context. In a computer
implementation an explicit return address or backpointer would be invaved. If return
addresses are stored in a finite memory then the language is depth limited and finite, and
sentence length is bounded. If we assume that no return addresses are stored, then we limit
ourselves to regular grammars, which are essentialy tail reaursive and are equivalent to
iteration, and whilst language and sentence can be unbounded we lose our ability to explain
various apparent constraints. On the other hand bounding aur depth o recursion with a
reasonable magic number [Yngve, 1961 Miller, 1954, allows us to use even more complex
grammars, whilst providing an explanation d various constraints, with the bound dbviating
the need for special purpose kluges like subjacency. We thus seem to have a choice between
the context-free or context-sensitive grammars that seem to be necessary to cover the
language parsimoniously, and aregular grammar that is really only capable of producing lists,
but can produce arbitrarily long ones. In saying that these are lists, we mean that it doesn't
matter how much we extend the construct, we still end up with the same kind d unit and do
not need to keep track of the internal structure for syntactic purposes.

In fact, lists may suffice us. Certainly they satisfy the common examples of constructs that
alow construction d unbounded sentences: conjunctions like ‘and’ clearly introduce lists,
and the ‘ house that Jack built’ use of ‘that’ without centre embedding also can be viewed as a
list: at each iteration, we are adding anather stroke to the painting, but there is no additional
grammar-processing memory overhead — in both cases our syntactic state before and after the
additional clause (or other construct) is the same, and each member of the list is constrained
to be of the same class(in the sense of being substitutable by any other member of the clasy.
Thereis no need to remember a whole history of backpointers.



This is what a recurrent neural net does, its recurrent layer builds up a picture, which gets
modified each time round, with new information and old information being processed
together to produce the outputs and the next recurrent layer. The other favorite example,
numbers, is just anather example of alist, either alist of digits or alist of words where once
we run aut of new words for bigger numbers we have to resort to repetition (one million
million million ...) —the very simplest form of iteration.

But what is  special about sentences anyway? We can replace any o the full stopsin a set
of sentences by ‘and and end up with new legal sentences. Similarly we can replace any
multiclause sentences invalving conjunctions or relatives by a set of single clause sentences
conwveying the same essential meaning. Ultimately it is clauses that appear to have the
strongest grammatical reality, and the combination o clauses tends to involve either extreme
limitations on depth, if not simple iteratiorvlists. The paragraph, and higher units, are not
normally regarded as subjects for grammatical analysis, as we move to anather level of
processng for which we employ new terms like style, narrative and discourse in aur
explanations of their structure, although there is no a priori reason to stop our grammatical
analysis at the sentence either.

Similarly, one could examine the other end o our traditional stamping ground for grammars,
the word. What is © special about words anyway? Isn't it the morphemes that cary the
meaning, aren’t the rules for combining morphemes describable using rules? Is the position of
an infledion in a word really more restricted than the position of an article in a phrase or a
vowel inaroa? Wedon't know where to write the space half the time, and use or omisgon of
hyphens depending on whether the same phoremic/semantic form is used adjectivally or
nominally. We can even intersperse whole words or phrases in the midd e of so-call ed words!
(Un-bloody-likely you say! Das shreibe ich nicht um!)

The robot baby experiments asaume that open class classs are finite but unbounded, and
asggn no spedal role to sentence or word - class membership can include constructs of
different lengths. Utterance length is not explicitly limited, but the length o learned
phrases/clauses is effedively sdf-limited by the number of layers of processing used before a
uniform set of non-terminals is reached, although recurrent variants of the algorithms do
theoretically allow arbitrarily long phrases (like numbers) to be parsed but will be limited by
memory in practice [Powers, 1992 Entwisle and Groves, 1994

? semantics and the lexicon can be acquired by learning but grammar cannot

Our previous discusson suggests that learning gammar is no more difficult than learning
semantics, and could even be the easier part. Certainly relatively little progresshas been made
in learning true semantics, as opposed to the pseudo-semantics whereby words that occur
together are grouped into so-called semantic classes. Segmentation into words is gill one of
the most difficult things for speech recogrition systems — and not surprising either, given the
arbitrary and inconsistent definitions of words we noted abowe. It is clear that a grounded
semantics can only be learned using multimodal information, and it may be that this
information is also necessary for complete learning of morphology, lexicon and gammar as
discussed earlier.

The theoretical results about nat being able to learn grammars hinge on several assumptions:
that language is recursive and non-finite (which we questioned earlier) and that no sources of
supervision a distribution information are available [Gold, 1967. Under these asumptions,
there are always multiple grammars that can generate any corpus — e.g. the one that consists
only of rules rewriting S as one of the sentences in the corpus, a reduced finite grammar, the
correct one (whase very existence is based on another assumption), and whole families of
grammars that allow more complex recursive constructs. The negative results are no deeper
than this. However, dropping any one of these asumptions destroys the theorems.



Supervision can involve simply a constraint on the order of presentation o some guarantee
that every construction/rule will be used in a fixed amount of time, or various other
probabilistic assumptions. It could involve any form of reinforcement, not just overt
correction. This can include being understood o having the corred form used in arefledion,
response or clarification o just in similar contexts. It could aso involve comparing a
generated form with aremembered form.

But there is another implicit assumption alluded to parenthetically just now: what makes us
think there is a specific correct target language? Whose would that be? The mother’s or the
father’s or the babysitter’s or the teacher’s? Each individual has their own idioled shaped by
their own experience and even twins develop dfferences in their language. So the
asaumptions underlying the language learnability results have two further potential holes: that
we may have no particular target language, and that we are not so much learning as
negotiating, some would say evolving, a language. But here is anather reason why neither
learning na evolution captures the process and conventionalizing does. Both the mother and
the child adapt. The conventions adopted are nat just those of the mother. The family picks
up and uses expressons the children coin, and develops its unique family conventions, others
develop in the peer groups at kindergarten, Sunday Schodl, in the park. Word play and aher
games also play arolein this conventionalization process and appear to be an integral part of
the chil d’s learning process[Kuczgj, 1983.

The assumptions about learning to criterion also fall down in that even the conscious targets
of the accepted common language, including spelli ng and pronunciation, sometimes are never
acquired. People don't use nominative/accusative pronouns ‘correctly’ in conjunctions, and
prescriptive correction has lead to error inversion (the unschooled say “me and my sister saw
...”, theschooled say “... saw my wifeand I”). Certain mispronunciations/misreadings persist
notwithstanding recognition that they are incorrect (eg. ‘misled” read to rhyme with
‘whistled’ — even as an adult).

Therobot baby project has siccealed in learning both recursive and non-recursive grammars,
but there is no target grammar and there is no requirement of identification in the limit. The
grammar can and does change if the language environment changes. The classes and rules in
our model only serve to identify units that seen to act similarly in relation to their context,
both syntactic and semantic. The purpose of syntax is to provide a framework for semantic
interpretation, and it seems to be the cues that are important rather than the precise form of
rules. Different runs and dfferent algorithms can produce dlightly different grammars, but
this does not necessarily affed the utility from the perspective of semantic interpretation.
However experiments to demonstrate this convincingly require us to build up a much larger
corpus of speech in sensory-motor context.

? grammaticality is absolute and probabilities pertain to performance only

Why should we make erors in performance? This would seem more relevant to our tennis
serves than aur speech production. If we are using absolute rules, why doesn't our
performance demonstrate absolute perfection? And why haven't we been able to work out
what these absolute rules are and implement a successul natural language parser. Although
we see accuracy claims of 97% or 99% for parsers and taggers, these are based on the number
of words corredly tagged, but the number of unrestricted sentences handled correctly is
typically more like 50%. This sems to be the state of the art at the end of the 20" century.
Many of these systems use probabilistic tricks to improve performance: eg. if you can' t tell
with more than chance probability when' dog' isanoun a averb, just assumeit is a noun and
you will increase your average performance figure because mostly it is - even if this means
you are choosing the alternative that seems lesslikely in the current sentence.



If we question the rigid application o rules, we allow for issues like efficiency and
computational load to play a role not just in an acddental sense in relation to performance,
but in an active sense in relation to competence. Competence in language is really about
effedive performance appropriate to the specific context. Humans are basically lazy and like
to cut corners, and language is no exception here. If we can convey the message with less
effort we will do so, even if this means breaking o bending the rules. If we have conveyed
our message acaurately, in what sense have we made an error? Many o these shortcuts then
get enshrined in the language, as frozen lexicalizations or cliches, as changes to the
conventional usage of a word (eg. compare US/UK ‘write me/write to me'), as telegraphic
forms, acronyms, portmanteaus and catchy slogans, progressng from now meaningless
conventions (‘How do you dd?) to lexicalized corruptions (‘Howdy!") .

Classmembership is clearly fuzzy. Some words sem to belong mainly in ore class and a
little bit in ahers. Most open-classwords can be pressed into service as any part of speech in
the absence of a standard derivation a supgdetive for a particular role. The more common
words tend to break the more common rules — having irregular forms, or suppetives, or
requiring omisson a alteration of the normal particles or inflections. Rules are possbly
fuzzy too. Infact, we have here another implicit assumption, that rules and class membership
are different things. Basically rules tel you how to make a member of a particular class,
while class memberships can be written as a set of lexical. But these ideas of fuzzy class
membership or multiple class memberships are different from the idea of probabilistic
performance. A parser can identify ambiguity without necessarily assgning probabilities.

The brain is evidently based on neurons, which sean to gperate probabilistically - at least
during learning. Information theory tells us that efficiency is related to probability, and there
is evidence that the organization of the brain is relatively efficient in an information-theoretic
sense [Zipf, 1949 Shannon and Weaver, 1949 and neural network simulations are able to
self-organize dficiently in this same sense [Malbsurg, 1973 Hertz et al. 1991; Kohonen,
1982 Ritter and Kohoren, 199Q,. Furthermore probabilistic and information-theoretic
approaches to grammar acquisition can avoid the negative results about learnability (breaking
the assumption that we don' t have or use information about distribution). Our choice of words
and aur grouping o words into classs all involve similarity of words and/or concepts, which
ultimately boil down to comparing usage patterns (linguistic and ecological contexts) on a
continuous rather than discrete basis — some things are more similar than athers. Nonetheless
syntax does not seem to be probabili stic or arbitrary in nature.

The real question here is what we gain from the assumption d absolute grammaticality.
Clearly probabilistic frameworks are the correct ones to investigate to test this assumption.
The robot baby project uses algorithms based on neurological, statistical and information-
theoretic insights. Where the training data warrant it, these systems can give absolute
judgements, but the more typical operation is for them to give relative indications. The fact
that we make deliberate and accddental puns and misinterpretations illustrates that absolute
judgements are not always appropriate. Also small changes in the algorithms can gve rise to
different grammars for the same language, or to slightly more or lessgeneral languages - or to
languages which make different judgements or parses for the same sentences. But the vast
majority of grammars proposed are broadly consistent with aur linguistic insights - and the
surprises that remain provide additional insights.



Figure 1. Thefirst physical implementation of the robot baby has microphones in its ears,
crude switches for touch, independent control of the head and each limb, and internal sensors
for orientation and acceleration/shock. The electronics is controlled by a 6809HC11
microcontroller. Philips USB videocams are currently used externally for vison, and also
provide additional microphones, but the next version will incor porate the cameras internally.

One area where we have been examining the fusion o data from different sources is speech-
reading. Our AV cameras (Figure 1) pick up speech and images and independently look for
phoretic and visual features that can be used to identify phonemes. In a reatively noisy
environment with microphones and cameras located on a computer monitor, and diff erent
speakers at different distances and heights, recogrizing phoremes from the auditory signal is
quite difficult - but close to 50% improvement in recall can be obtained by taking into account
the visual features [Lewis, 200Q Movdlan and Mineiro, 1999. In this case the networks take
evidence from the different sources and weight appropriately to give the final judgement. We
are also developing more sophisticated fusion techniques that estimate the eror for an
individual instance (as opposed to using expeded error based on probabilities) before
combining the features. Humans appear to be very good at assessng the reliability of
different sources of information and compensating appropriately, and asessng reliability and
noise condtions is an dovious first step.

? closed classes/functional forms are learned late

Another fundamental bias arises from our interpretation of children’s geech and the reative
difficulty of assesdng a child’'s comprehension o adult speed. When we glossthe words of a
child, we tend to associate them with gpen class words, primarily nouns and secondarily
verbs. But the child’s word is in some ways more like a sentence, referring to the whole scene
or desire, and aur interpretation of the word as noun o verb or something ese may be
mediated by acddental resemblance to as much as deliberate emulation of a word.

The first syllabic sounds (/ma/, /nal, /dal, /bal, /pal, tal, Ikal - especially reduplicated) are
universally associated with members of the family and aher eventsobjeds that are
particularly salient to the child, and the associations are clearly encouraged by us (the person
‘named’ especially). However, many of the usages are primarily deictic in reture, and are
aimed at attract attention and accompanied by appropriate gestures (e.g. /da/ with painting,
/nal with looking under a chair at afallen dojed) andthereis ome evidencethat these erliest
protowords are generalized deictics or prepositions. For my own daughter /na/ represented
‘in” when she was out, ‘out’ when she was in, ‘under’ when the ball went under something,
etc. This was the first consistently used protoword. Similarly /da/ accompanied pointing
related to interest and attention-directing behaviour. /nana/ represented food, particularly



perhaps her mashed banana favorite. /mama/, /dada/ and the like came later. The first name of
a person she reproduced was Ann, avisitor for afew days. Shortly afterwards a visitor named
Johnwas also Ann! It iswell known that homing in on the right level on generality is one of
the hardest things a child hasto da

Although we are focussing on aur interpretation o the child's first words, the child's
language ability is over a year old by this point. Already prior to birth the child it seems that
recognizes and responds to the mother’s voice. At birth, even very premature birth, the child
differentiates between his mother tongue (literally) and aher languages [Mehler et al., 1993.
Wl before the child's first words, comprehension is sen to be better for full sentences than
for telegraphic sentences that omit the closed classforms and disturb the prosody. It would
seem that the rhythm of the sentence and the closed class forms play a kind d sentence-
internal deictic role even then. They alert the child to where the words/morphemes are that
might correspord to external stimuli, objeds, colours, activities, locations. They are very
frequent, and indeal characteristic of the language.

Why have we negleded these words in aur models of language learning? There is me
evidence that they are recogrized early, and there is room for considerable further
exploration. Indeed, it is very easy to pull out these characteristic closed words and
inflections, andit is worth considering whether how useful they are to the language learner.

So the question is why these words are produced so late. Or are they?

If we consider the early and very common deictic use of /da/ glossed ‘there’, we note that our
glossincludes the relatively rare and difficult /dh/ phaneme. This is rare across languages,
but is characteristic of Engish and difficult for non-native speskers to master. Most
importantly its word initial usage eclusively marks closed classwords (the, this, that, these,
those, there, they, then, thus, thee + derivatives) the most frequent of which would all be part
of the broader compassof /da/. In German it is /d/ that has this role, and in French it is/l/, in
al cases covering both the ‘there’ glossand the articles, and gving rise to the characteristic
sound d the language. Anywhere we hear this closed-class deictic marker, we are likely to
have our attention directed at an dbjed, and the foll owing stressed word is likely to mark that
object. On the negative side, the pseudodeictic may not be stresed (‘the dog) and even the
deictic may not be (e.g. in French it combines with ‘voir’: ‘Voila un chien!). On the positive
sideit is often duplicated (‘La! Voilalechien!” —triplicated here!) and the words that capture
attention like' look' vir/regarder’, ‘gucken’) will also be associated with the deictic function
and become frozen into attention-drawing phrases (‘Look at that!’, ‘Guck mal!’, ‘Vailal’) .

So the assumption that open classwords are learned before functional forms could be biased
by our focus on production, and the difficulty of assesdng comprehension, or recogrizing
exactly what was intended o just what was understood.

The robot baby project uses two classes of algorithms in terms of assumptions about closed
classwords. Our earliest algorithms made no assumptions about the &istence of open and
closed classs, but closed classes of words emerged first and acted as seds around which
larger phrases and clauses were built [Powers, 19834]. Generalizing acrosslinguistic levels,
emergent closed classs include the vowels as well as the articles [Powers, 1991-2]. The first
of these subsequent algorithms were deliberately designed to bias for small classes of high
frequency elements that provided strong structural cues, but these closed classes were il
essentially emergent. Other experiments have eplicitly examined how parsing can be carried
out solely on the basis of these kinds of classes - the open classinformation is thrown away
entirely, and parsing is completed using only the closed classwords and affixes [Entwisle and
Groves, 1994



Paradigms and Algorithms

The total context.

Before going on to discuss our computational experiments in more detail, it is important to
make a distinction that is fundamental to experiments on learning.

The formal results about learning do not relate to any particular theory or algorithm about
learning — they are independent of mechanism. They say whether any mechanism is capable
of learning the target to criterion under particular conditions. What is important is the
ecological paradigm: the context or environment in which learning takes place, including the
relationship between the learner and dher agents. Mathematical formalisms reduce this to a
very simplistic concept, that of supervision. The well-known learnability results of
Gold[1967 asuume a sequence of sentences without supervision, whilst the normal level of
supervision envisaged in learning theory would simple indicate whether a sentence was
correct or nat.

The supervisory arrangements used in most corpus-based a data-oriented language learning
are even stronger than those normally used in learning theory [Bod,1995: the complete set of
tags for each word o the sentence is provided, if not the complete parse. This doesn't so
much tell you whether a sentence is correct or not - all are assumed correct - but quite
explicitly tells you the classes and/or rules. This paradigm is clearly unrelated to the one the
child is faced with since thereis no drect source of information available to him about rules
or parse trees, and neither is the interlocutor able to supdy such information as it is nat
known to her ether.

Poverty of the Stimulus denies that even basic supervisory information is avail able — the child
does not get told that his sentence is grammatical or ungrammatical, nor is he supgdied with a
set of starred sentences along with the unstarred ones. Even when correction occurs, it tends
to be unfocussed and implicit, and even when explicit focussed correction is supgied, the
anecdotes are rife about how the child appears to unable to make use of it. This may be a
simple as nat being ready to learn the correspondng details, or being more focussed on some
other aspect of learning ar communication at the time.

So what kind of supervisory information is avail able to the chil d?

Thereis ome evidence[Turk,1984 that the child has a repository of recognized utterances or
fragments which can be used to repair their errors — they make the eror, recogrize that it
doesn’'t sound right, and repair it. It is even possible that anticipated correction takes place —
that is the sentence is repaired, or competing choices sleded, based on what the sentence
should sound like. With a significant memorized corpus, preference for chunks that are
similar to remembered chunks could play a significant role. Anticipated correction does not
technically constitute supervision, but it does provide distribution information that can serve a
similar role.

The child also hes available contextual and semantic information that can help the choice
between different possible interpretations of a sentence, and hence different possible
structures and rules. This raises the question o the relationship between the development of
ontology and semantics on the one hand, and syntax on the other. Indeel the focus of
psychdinguistics, as we saw above, has been on syntax and assumes that this is the hard part
and that semantics is easier. But we saw earlier the possibility that simple surface
grammatical/morphdogical cues may focus attention on the words that correspord to the
features of the scene that are in focus, which suggests that such early syntactic awareness may
asdst in the development of semantic associations.



A proper model of language learning should associate models of ontology and semantic
learning with grammar learning, and seeks to refled the total environment in which the child
finds himself.

The available mechanisms

It is difficult for us to know how much a chimpanzee understands about its world, because it
cannat tell us. We can see some evidence of memory and reasoning, of understanding of
principles of cause and effect and d simple physics, but it istricky to tease out the dfeds of
instinct from the dfeds of learning until we place the animal in an artificially manipulated
environment. Much the same can be said about a child in his first year, but when contrasting
the child and the chimp, we are unable to distinguish which factors that separate them after
that first year are due to purely linguistic development, and which are due to more general
cognitive development. But even leaving language aside, our ability to control and
manipulate our environment would seam to be vastly superior. Indeed, tool-making competes
with language as we try to characterize what capabili ties distinguish the spedes.

At the lowest level, it would appear that there is a repertoire of mechanisms that is avail able
to both chimp and child. The mechanisms that lead to recognizing visual features were first
discerned in experiments on chimps and cats rather than human subjeds. Basically these can
be characterized in probabilistic terms, associating co-occuring characteristics, recognizing
that thereis no such things as identical stimuli, and that similarity will haveto suffice.

This principle of quantifying similarity, classfying together percepts that are reatively
similar and classfying apart percepts that are rdatively dissimilar, is fundamental. It isalso
indicated in auditory processing, andindeed at many levels of sensory-motor procesdng o all
kinds. It also seams that it is necessary to dscard information that is of lesser significance,
that we cannat retain every bit of sensory-information we are hit with, and we realize an
advantage by discarding that which is lessobviously reevant.

In general it would seem that we discard uncorrelated data — it conveys much information in a
technical sense, but in the absence of patterns there is little we can do with it, and in the
absence of correlation with basic survival drives there is little relevance. When there is
patterning in the data, it means that some parts corrdate highly, and we can represent these
more dficiently as features precisely because of this predictability. Furthermore the
prediction o significant events has considerable survival value. Once we have re-represented
the data to abstract out the obvious correlative features in the local modality, we also impose
some structure on the remainder of the data, and correlations across modalities can take into
acoount both the features recognized in each, as well as corrdations amongst the
unrecognized portions of the data in each modality. This will automatically produce multi-
modal concept representations. The more frequent and obvious features in each will act as
locators helping us to associate the less frequent features, irrespective of their intrinsic
salience.

Thus we eped to see frequent features, like edges, providing information about where to find
the lessfrequent more widely varying kinds of information. The correlate in speech is that
the frequent morphdogical features, like affixes and articles, provide information about
where to find the more highly variable content words, and tend to identify their nature —
including their part of speech and grammatical role. They further allow for the cross
correlation d what is sandwiched between functional forms in aur auditory stream and what
is bounded by edges in aur visual stream. In fact there is psychoogical and psychoacoustic
evidence that diff erent features of the same objed, even in dfferent modalities, are grouped
together using a kind o frequency coding of the reagnizing neurons. This is apparently
achieved by corrdating according to ‘common fate’ that is colledions of features that appear,
move and disappear together, are coded together [ASA].



Looking back over our discusson of assumptions, there is a common theme: we should treat
them as refutable hypotheses, nating that there is never total confirmation - only refutation is
certain. What we have described so far in this section are mechanisms of very general
applicability across different types of perceptual and cognitive processing, and even across
different spedes. The question is how far can they go in explaining the acquisition o
language and ontology. Given that other species do not sean to have the higher level
linguistic and inventive sKkills, it is necessary to consider two possble reasons for this: they
simply do not allow the complexity of associations that we are permitted — some kinds of
information may never come in contact with each ather — or that there are one or more
specifically human, and possbly spedfically linguistic, mechanisms. This argument has
aways underpinned Universal Grammar, negleding the posgbility that it is dructure rather
than mechanism that distinguishes us.

In this projed we are not particularly concerned with whether mechanisms are innate or
learned, linguistic or generic, but rather at coming up with the simplest explanation d the
child’'s developmental and acquisitive processes. This bottom-up approach, starting with
known, obvious mecdhanisms — and milking them for all they are worth — will tell us the kinds
of things that can be learned using this smple model, allowing us to focus on what is l€&ft to
see whether or nat those functions correspond to capabili ties that we have and ather species
don't.

The Robot Baby

Building a Baby

Language learning experiments with robot babies, ether in thought, computer simulation o
mechanical implementation, go back at least three decades, and the idea that language will
nedl to be learned by a robot in areal environment rather than by an isolated computer was
considered in the paper that originated the famous Turing Test half a century ago [Turing
195(@. Our own experiments go back over 20 years, but the majority have invaved simulated
rather than actual robots.

In some ways, these erly experiments were premature, as the computational power required
was unavailable and underestimated, and aur understanding o Machine Learning, Neural
Nets was nat nearly so well-developed. Nonetheless useful principles emerge, including the
idea that there should be a strong correspondence between the sensory-motor capabili ties of
the robot and the language learning mechanism. In fact, Turing himself played with self-
organizing processes very similar in character to those discussed abowve as well as playing an
important role in defining the family of computational machines that correspord to the
various members of the formal language hierarchy [1952193§.

Until very recently, the robot in Natural Language eperiments was usually a graphical
simulation if not a figment of the researcher’ s imagination.Winograd[1973's famous
language understanding robot arm, SHRDLU, was one of the first such simulations. Even
where a real robot existed it was often more convenient to carry out the more complex
experiments with simulations. Even today, it is usually much more appropriate to run small
modular experiments assuming particular kinds of inputs and examining the outputs, than to
try for the supercomputer level of performance required to do everything at once. At the
moment we have to use our imaginations to envisage how a total system would gperate. But
noretheless ®me robot babies are being built and some initial attempts are being made at full
integration — though still not in real-time.

Therobot ' babies that have been built, range from ar@etre giant and a disemboded head at
MIT [Brooks et a. 199§, to robot-animal toys that claim to learn, to life-size or doll-size



babies. The smaller robots and animal- or baby-like robots have the advantage that they can
be brought up like a real baby and exposed to the same inpus as areal baby, to the extent that
the perceptual system is up to it — and only now are they becoming feasible. Ideally, these
robot babies will respond in a way that encourages and direds attention and interaction
(‘supervision’), in terms of gestures, expressons or words.

Another kind of language learning robots is more like cars or trucks or bulldozers [Steds,
19967]. These are very interesting in that the goal is to study social evolution and in
particular the invention of a communication system - rather than the learning o ours! In this
case, the ecology is set up so that cooperation and communication are necessary for the robots
to' survive .

Whereas previous experiments have been erated under artificial and restrictive
experimental conditions, our concept of a robot baby extends to the idea of pladng a robotic
dall with a young child and using it to collect a comprehensive corpus of audio, visual and
sensory-motor data from a perspective very close to that of its human owner/sibling, as the
two o them experience the world together and learn together, or as a dlightly older child
mothers the robot baby. As the projed matures, we expect that the doll will be able to interact
with the child and his parents in an increasingly natural way, respondng in appropriate ways,
both linguistic and non-linguistic.

The Language Modality

The first stage in our robot baby language acquisition modd involves sparate correlative
processng in the individual modalities. The connedions between modalities are assumed to
take place at ahigher level — and in this case by high-level we mean the level of morphology
(or invision, the basic-level categories, that correspord to balls and dogs).

Since visionis not our focus here, we will say little about it. Certainly self-organization up to
the leve of features is graightforward, with edge-detedion and colour-constancy correction
being important factors. Unfortunately the self-organized grandmother cdls do not recognize
grandmothers too well, but certainly features like eyes and mouths, and hence heads and faces
can easily berecognized by the same self-organization processes that produce blob and corner
detedors. So the level at which interaction is proposed is the level where self-organization
peters out, a the paint where we have the features avail able to recognize eyes and mouths and
heads, but need to intermodal correlation to attach significance to them. Visual learning is
computationally expensive so for some of our experiments (e.g. on lip/speech-reading) we
have eplicitly programmed rather than self-organized the appropriate visual feature
recognizers and work with a reduced set of seleded attributes.

In the language modality, self-organization from speedi-code vedors into phores and
phoremes, morphemes and syllables, words and word clusters, phrases and simple clauses
seams to ocaur straightforwardly, although no system has yet gone the whole way in one
experiment. Moreover, it seams that around 10 levels are involved, and my students and |
have separately self-organized drectly from speech-code-vedors to phones, and from phones
to phoremes, from phoremes or letters to CV/syllable structure and all the way up through to
unnested phrases and clauses, at which point we end up with a sequence of NP or VP like
contructs. Thelevels at which intermodal correlation is proposed are the top three or four.

Simple eperiments in semantic learning across modalities have been performed, but nat in
conredion with these self-organized hierarchies. As discussed above, it is more dficient to
explore the different ‘modules’ separately, even when essentially the same algorithms are
used.



We will now proceed to examine the different types of experiments and the prospects and
hinderances in relation to bringing everything together.

Grammar Acquisition

Our initial focus in designing a language learning model has been the unsupervised
acquisition of structure, since our aim is to learn with the simplest mechanisms and the
minimum of assumptions, and in particular to see what can be achieved without supervision
andto characterize what kind d things cannat be learned this way.

Our earliest experiments [Powers,19839] were based an extension d a basic phrase structure
grammar, based on the insight that words either had to group to the left or the right, and they
could either group with another word, or with a larger group such as a phrase. The first
version was supervised, and explicit feedbadk was provided about whether the grouping was
appropriate or not. Thisisavery strong form of supervision and can be done interactively or
by making use of a pre-parsed treebank. An unsupervised approach was also developed in
which we counted the number of times different grouping rules proved useful, which provided
aform of implicit but delayed voting for the different alternatives.

In developing the unsupervised version, we also removed the initial grammar and forced the
program to start from scratch, making hypotheses about word classes and gouping rules. We
increased the number of levels that could be considered for hypothesizing rules from two to a
nominal seven — the seven most likely candidates for the sequence of words en so far were
maintained. Whenever a new parse tree was neeled to incorporate the next word, the least
likely of the seven stored putative parse trees was dropped and a new composite tree added.
The proposed new parse tree would also be examined to see whether it combined usefully
with stored parse trees that adjoined, and would again suppant a stored parse tree if its utility
was calculated as being higher. This reflects closely the way in which independent parse trees
(e.g. for a noun phrase and a verb phrase) for adjacent sequences of words are joined into a
full parsetreein atraditional approach.

This model succealed in learning to parse small phrases/clauses hierarchically, but proved to
be etremely limited and quite unreliable as utterance length increased. But what was
interesting was that the end-of-sentence punctuation was classfied first, then articles, then
sequences of closing purctuation followed by an article, then a structure in which that
combination was combined with a foll owing noun, essentially recognizing the subjed of the
sentence. This rather strange construct seemed disappointing at first. We had been seeéng the
open class words as the keys, and had indeed also experimented with learning to parse
telegraphic sentences — without much success But here, instead d recognizing the noun o
verb as head of a phrase or clause and finally augmenting with those pesky function words,
we found that it was the closed classwords that were the seads around which the crystalline
parse structures grew. This meshes in with the perennial suggestions that articles may be the
head o the noun phrase[e.g. Hewson,1991]].

But there was ancther strand to this: a totally independent model [Powers,19841989] based
on recurrent time-delay/decay self-organizing neural networks achieved almost identical
results to the complex statistical model used in the previous model — and with anly a page of
code! There was clearly something significant about the closed class words. In addition
preliminary experiments were undertaken with a simulated ontology in paralld with these
early grammar learning experiments, and a simulated robot world was built to facilitate this
work onsemantics [Hume, 1985.

The results highlighting closed class dements were influential on another series of
experiments [Powers, 19912] inspired by Pike1949’ s method of phorological analysis, and
focus=d at the character/phoneme/speech level. Rather than trying to work statistically, the



idea was that a particular combination either was or was nat possble. The basic idea was that
of contrast in identical or analogous contexts (CIE/CAE). By colleding together all
occurrences of a particular context — the sequence of two o three units on either side of a
target unit or sequence — we collect a filler class of two to seven fill ers that contrast in a
singe set of identical or analogous contexts. The number of such dlots in which the class
occurs is used as an indicator of the significance of the class and the most significant classis
labell ed with a non-terminal symbol.

We succesqully predicted that at character/phoneme level, the vowels would be the first class
to emerge, and that at word level the articles and punctuation would again be the most
important classes. The members of the discovered class were recoded with the new non-
terminal, and the entire process repeated until we ended up with an iterated sequence of a
singe non-terminal. This non-terminal essentially represented alternately noun phrases,
prepositional phrases and verb phrases. A variant of the process was used which allowed a
forming classto have its non-terminal added before finalizing the class thus allowing the
formation of hyperclasses invalving recursiverules.

The following is typical of the first two classes found, starting from normal English text —
note that it is discovering syllables from theinside out:
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Normally, with this method we have started from characters, but the following grammar
illustrates the kind of rules we might expect if we applied it starting from words. A, B and N
represent classes of articles, adjedives and nouns that are nat shown, T and V represent
transitive and bitransitive verbs, and R correspords to a noun phrase.
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In fact the grammars found are never this smple, and indeed allowing reaursion (Q is
recursive in this constructed grammar) tends to produce much worse looking gammars
(including totally degenerate grammars) compared with the standard version d the algorithm.
While the grammars would be esier to understand if labelled with standard English non-
terminals, the classes are discovered by the program and labell ed with successive letters of the
alphabet.



The point of this example is smply to illustrate that when you group together sequences of
one or more units that occur in essentially the same set of contexts, the resulting classs are
not just simple lexical classes, but permit more complex entries, and indeed whale
hyperclasses of context-free rules. This does not illustrate what any particular algorithm
finds, but rather what the paradigm permits — the formal learnability results are, as mentioned
above, not about any particular algarithm, but about what is possble or representable in the
paradigm. This learning paradigm allows the representation o arbitrary context-free
grammars. It cannd represent, and thus cannot learn, indexed o other context-sensitive
grammars, because the left hand side is restricted to a single non-terminal labelling the
induced class

A related two step approach to unsupervised learning which has been developed
independently by a number of researchers [Langley, Grunwald], involves merging words or
constructed units into classes or phrases, with the aim being to achieve an equivalent but more
compact representation. This is based on an idea of parsmony known as minimum
description length, and reated to Shannan's information theory [Shannon and Weaver, 1949
and Zipf's principle of least effort [Zipf, 1949.

Automatic Segmentation

The child stask is to make sense of his linguistic input, but we cannot assume that he has pre-
segmented words or morphemes available to hm, nor can we assume that he has the memory
capacity to have whoe sentences available for dissection.  Rather, his first task is
segmentation, identifying what the useful pieces are. Thus our bottom up approach seams a
more appropriate model since it does not impose as much of a memory or computational
burden. The simple noun and verb phrases that emerge correspond to a level that seems
appropriate for crossmodal correlation and association, and indeed this mode makes an
interesting prediction, that these phrases are essentially of a similar kind.

We are currently looking at retaining the more frequent/functional/closed-class parts of the
information as potential features, and propose that there is a finiteness feature that switches
between verb-phrase/clause-like and noun-phrase/noun-like structures — for example ‘to’
marks a verb phrase as infinitival and nain-like (e.g. an infinitive can be a subject or an
object), ‘that’ turns a clause into a noun, ‘-ing’ makes a verb or a verb-phrase noun-like.
Thesefeatures arerdatively easy to dbtain using a variety of unsupervised techniques, as well
as emerging automatically in aur model. Semi-supervised learning techniques are already
capable of producing a very competitive constraint parser given just these closed-classwords
and functional segments smply by noting which coll ocations are licensed in the corpus (an
unsupervised algorithm) although at present manual decisions are made about words that are
not derived o infleded forms whose range of roles is automatically determined by the
morphology (the supervised aspect).

Proposals for automatic segmentation go back at least 50 years, and indeed many approaches
use ideas very similar to those used by Harris [196( and Pike [1949. Generally speaking,
the perplexity increases at a morpheme or word boundary — that is the number of choice for
the following character/phoneme increases dramatically at these boundaries. However, as
discussed earlier, the word is ill defined, and is not a true segment. For other levels of
analysis, segmentation principles based on information theory are fairly effedive and any
impreciseness or error in these segmentations does not sean to preclude dfedive use at
higher levels of analysis/Finch,1993 Brent,1997 Witten,2000. Inded it is possble to make
multiple hypotheses available for higher level analysis in the same way that we deal with
homonymy, homophory, polysemy and polyclassy through lattice parsers or Hidden Markov
Modes, and some asociative models can deal with such fuzzy information without any
significant increase in processing time or resources.



Ontological Learning

Work on recognizing dojeds in visual scenes and in learning simple concepts in a block
world are areas of research in their own right within Artificial Intelligence, Neural Networks
and Cogritive Science. Generally speaking however, supervised approaches are more
common within Al and NN, whilst bottom up approaches tend to have more of a cognitive
flavour.

Working bottom up, the lines and edges and blob-like features slf-organize easily and early,
and it is around this point that we want to look at how we can attach names to concepts,
learning to recognize them in terms of these basic features. Most concept learning o
ontological learning experiments would however assume that these edge-based features were
provided directly by a simulated robot world. Our simulated world, Magrathea, was built in
1984 and used wire-frame models with full 3-D perspective, eementary physics (e.g. to
ensure that objects bump into each ather rather than pass through each ather) and a variety of
fixed, mobile and motil e objects. The motil e objects are agents that move around under the
control of their own program, and were either simple behavioural scripts (the dog was on the
look aut for the postman and chased him when she saw him) or keyboard controlled (the
teacher entered the world as a participant by controlling her persona). Similarly the learner
could be a motil e agent under the control of a learning script, but most often was represented
only by an eyethat provided a particular perspective. An eye could receive information in one
of three forms: edge information in the field of view, geometric information about each shape
that was seen, or ontological information identifying it as ‘Fred’'s leg’. The different levels
were used according to the aims of the current learning experiment — obviously you dan't tell
it you've seen part of Fred if the point is for it to learn to recognize Fred. It proved easy to
learn simple geometric objeds and noun-like basic categories. We also showed it was capable
of categorizing different kinds of activities, and we learned some simple verbs of motion
(1988.

Another major project on learning in a simple simulated environment is the ICSI LO project
research [Feldman et al., 1990, Hogan et al., 1998, where again a number of interesting
concepts have been learned. Within this kind o simulation, it is not only possble to learn
simple noun and verb concepts, but it is possble to learn more closely just how we define
certain complex relations, and the preposition has been an important focus both for the LO
project and cur own.

By setting up an experiment in which an dojed moved around and a subject labeled the scene
either with a single preposition o phrase (‘to the right of' versus ‘beside’) or a full sentence.
The point of this more complex formulation is to move away from the supervised paradigms
where the ‘corred’ word is associated with the scene. In aur 1998 experiments [Homes,
1999, the learner had to deduce which was the landmark and which the trajector (in fact it
only had to be consistent — if it selected the wrong one it would learn inverse relationships —
left for right, etc.), it then had to make hypotheses about the various Cartesian relationships
that held and see which were consistent for a particular preposition. In the full sentence
version, an addtional complication is present: it is now necessary to attach focus to the
correct word. This was not rdiably achieved in the absence of ‘knowledge’ of other words
(open o closed clasg in the sentence, and in a simulated world learning successis grongly
influenced making items slient in an already oversimplified visual world.  Although
prepositional relationships can be learned easily once both the word and the trajedor and
landmark are salient, the real question is whether it can be learned using real sensory data
based on plausible models of sdf-organization of structure, cortrol of attention and
assgnment of salience. Thisis what we are providing with the physical robot baby.



Speaker ldentification, Location and Separation and Speech Reading

The audio, visual and ather sensors were added to the robot baby primarily with the intent of
allowing the development of an ontology that permitted exploring the learning this kind of
syntax and semantics in a rich environment with ratural feedbadk of various kinds. However
anumber of other possibilities have been gpoened up for exploration by this gep.

As part of verifying the suitability of our sensors for the ontological learning task, we wanted
to see how well we could do speech reading. We wanted to ensure the baby had the
capability to locate a speaker aurally and Msualy, and then to see if there was sufficient
information in the visual stream to lip-read enough to improve the speech recogrition process
Commercial speech recogrition currently depends either on using a very small vocabulary (as
used for simple phore menus) or on using a headset microphorein a quiet environment, and a
statistical model to predict thelikely path o the transcribed sentence. The baby is not usually
going to be at the ideal distance for speech recognition and the environment will tend to be
noisy. In addition the doll's microphores may also pickup sounds guch as the child's heartbeat
or therustling of clothesif theddll is being held to the chest or rocked.

As with all of the experiments discussed here, this is work in progress although we have
encouraging preliminary results. Although it may seem less rdevant to the moddling o
language acquisition, we seethis AV processng as integral to the experimental program. Just
as we have actually been making it harder for the computer by asking it to do parsing without
semantic references and ortological grounding, similarly we are making speech recognition
harder without the visual and diredional cues that assist us in attending to and understanding
a speaker. Also aur recogrition of a speaker's characteristics (both auditory and stylistic) is a
key part of our ability to tune into and understand a speaker. All of this forms part of what we
mean by developing a complete ontological model, although eventually we will be eploring
emergent capabilitiesin this area whereas presently we are using a supervised training regime.

What the robot baby has taught us!

At the start of the robot baby project, 20 years ago, | naively assumed that grammar was about
rules and expeded to be able to learn cut and died rules. | assumed that grammar was
intrinsically different from phorology although | recognized that we usefully parse visual
scenes and thus smilar techniques should be applicable to language and semantic learning.
The robot baby project has succesqully used such perceptually-motivated mechanisms to
discover patterns in simple simulated and real visual data, to analyze (auditory and visual)
speech data, and to find classes and rules in phoretic and word to clause level data. Whilst
the learned parsers and analyzers fall somewhat short of the best speech recogrizers and
parsers, we have been able to adapt the learned classes and rules to produce a commercially
competitive grammar cheder [Powers, 1997 and a competitive constraint parser [Entwisle
and Groves,1994.

The single most important discovery in this research program has been the role of the closed
class- and the etension of the concept from a set of function words to the analogous classes
at every level from the phoreme to the phrase. The second most important discovery is that
segmentation comes for freeif we simply allow the system work out what size phrasal units
belong to a filler classfilling a particular set of contextual slots, and the filler class thus
becomes a hyperclassof context-free rules. Third, and thisis ssmething we are still currently
exploring, it seams that the most frequent most closed-class elements in a phrasal unit lends
their character to the unit and is responsible for cohesive interaction and syntactic constraints
- we can regard this as self-organization of features. Our parsing strategy is essentially bottom
up, so these constraints can bite early and influence the formation o the phrase structure or
parsefor the sentence.



Perhaps the most surprising discovery is that our learning algorithms produce a set of simple
noun and verb phrases rather than full sentence parses and the possibility of these
distinguished by a finitenessfeature. Indeed, it appears that these phrases may actually be the
most critical level for intermodal asociations because they correspord more diredly to the
ontological associations.

Another interesting consequence of our focus on segmentation and classfication is that rules
turn aut to be an emergent property. Moreover, while very consistent and accurate segments
emerge at the various levels, there is often ambiguity as to how they may be composed from
lower level units/segments. For the sake of drawing a parse-tree we can arbitrarily asame a
gredaly left-to-right heuristic that gobbles up as much as possble as early as posshble, but this
obscures the basic insight [Langacker,1997. We don't need or have strict deterministic parses
in the traditional sense, but rather our segmentation and classfication processes allows
extraction d constituency as an emergent artifact of the process The syntactic constraints our
systems learn need nd force a unique parse tree, and we generate parse-trees only because
they are expeded by our peers and are necessry for quantitative evaluation o our parses
against other approaches [Entwisle and Groves, 1994Powers, 1997.
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