Hardware System Simulation

D.K Sharman , Motorola Australian Software Centre, Adelaide, South Australia
D.M.W. Powers , Computer Science, Flinders University of South Australia

Email: dsharman@asc.corp.mot.com, powers@ist.flinders.edu.au

CONTENTS

OSSR TRODUCTION 1
PP RPROTPUPRPTN: NEPSI 1
2 PP POUPRPTPPRPPN ASIMUT 1
2. L L e em—————————— it ettt e e e e e e e e e e n e e n————————— Concurrent Distributed Processing 1
2 e e e NEPS$AS A CLIENT SERVER ARCHITRECTURE 2
2. 2. e ———— et e e e bt e e e e e e b rre e e e e e b bt e e e e e abba e e e e e e anbres Data distition. 2
22 U SPTR @ERVIEW OF THENEPS NETWORK 2
2. 3. e —————— et et e e e e e e e a b e e e e e e nneee NEPSi client ~ ASIMUT 3
2.3 e —————— ettt e e e o h bttt e e e e oahteee e e e e et b et e e e e e abbae e e e e e s abraeeeeeeaas héTArbiter 3
2.3, e ————— ettt e e e bbbt e e e —e et e e e e b et e e e e e e nbree e e e e e anraes NEPSed#ons 5
PP @MMUNICATION MODEL 5
2.8, L e e——————— ittt —r e et aeaaeaae e e e e e aaa i aarraanrraaees Answers as Acknowledgment 5
2 e o——————— ittt e et e e e e e e e e a e e e e e a et aataaaaaaaaaas Checkpointing & rollbacks 6
2D et e e e et e e e e e b r e e e e e e e bbb et e e e e e abbr e e e e e e nnrres VHDUODELS USED 6
2 01 PSSP TNP pessor 7
1220 TP PRPTRPPI ESTS FORTNP 7
2.8, L e em——————— ittt —————raetaeaae e e e e e e e e e ann———————arateataaaaeaeeaaeaaaaaaaaas TNP assentbbts 7
2 PRSP COMPUTING ENVIRONMENT 7
2 S PP PUPT PRSPPI INITIAL TESTS 8
2.0 e VARYING NUMBERS OF SIMULATORS& PES 9
2.10MATRIX MULTIPLICATION ON TINP ..ottt emee ettt e e e ettt e e e e e s st e e e e e e anbbbe e e e enneneeas 11
2.11VARIABLE MACHINES, PROCESSES ANDPEScciiitiiiie e ittt ettt ettt e ettt e e e ettt e e e e s st e e e e e e nnnnees 13
P A o T 7Yoo P PP 16
2. L3 MULTI CAMPUS SIMULATIONutttiteeesiitteeeeeesauttaeeeessanstseeesssatseeeeessanttseeaessastaeeeesssassbeeeeessanseeeessssnssnees 16
2. 1ABFECT OF MIGRATION/ LOAD BALANCINGuuuttieteesiiuttteteeesaanttteeeessannteeesssnssseeaesssnsnneeesssnnnsseesesssnnsnned 6.1
2. 15 NETWORK TRAFFIC EFFECTS ottt et iutttttteeetiutttteeaesaastteeeeeessbateaessansseeeeaesaastteeeaessasbeeeeaessantbeeaessasseneeeessanes 16
SO RRPRP DISCUSSION 17
PR SPPPPRRPIN REFERENCES 18

© 1999 Prentice-Hall, Appears in R.Buyydligh Performance Cluster Computing:
Programming and Applications, Vol 2, Prentice-Hall, pp395-417, ISBN 0-13-013785-5.

1. Introduction

Electronic devices are becoming increasingly largesre integrated, powerful and difficult to
design, so that simulation must play an ever irstneggand important role. With these increasingly
large systems, simulation times are actually ggttielatively slower with regard to the target
systems being simulated [5]. The aim of this proyeas to ascertain the benefits of using a LAN as
host for a parallelized simulator of coarser gthsn has been implemented previously.

The artifacts simulated in this project are be laranachines themselves. The choice of
simulating parallel hardware comes from three fagtwith the first two being able to affect the
simulator’s load. These factors are

1. Each Processing element (PE) can be variedéicsimplexity,
2. The total number of PE’s can be manipulated,
3. This is to a real world problem faced by engiaetesigning parallel hardware.

The design was primarily dictated by efficiency siolerations. There are several ways in which
network traffic can be minimised. The first is teeubroadcast rather than point to point
communication as much as possible, and we savétefuon overheads by designing our protocol
using UDP directly.

2. NEPSI

The Network Enabled Parallel Simulator (NEPSi)his test bed for this project. It consists of a
VHDL simulator augmented with communication prim@s so that it can be distributed across a
network of workstations.

2.1 AsIMUT

NEPSI is based on ASIMUT, a VHDL simulator whichpert of the ALLIANCE CAD package
from the CAO_VLSI team at MASI laboratory, Parisairce [4]. The alliance CAD package is
primarily intended as a teaching tool and as sugparts only a subset of VHDL. However, it has
been used in serious applications by the team a8MAd several large projects have been reported
using the package. Most industry standard packagegriced in the tens of thousands of dollars
plus annual licenses and require high end workstatio do anything of a serious nature on them.
ASIMUT on the other hand is happy to work with wat memory, will run on a low end SPARC
(an ELC at that) and comes in at a cost we cdifikdca nothing.

2.1.1 CONCURRENT DISTRIBUTED PROCESSING

NEPSI is a concurrent distributed simulator. Bysthie mean that the processes that comprise
the simulator are not only spread across distrbuteachines, but that multiple copies of the
simulator may also be run on each machine. Thusatenly have concurrency provided by the
distribution process, but we also have concurrgmoyided through time sharing on each machine.
This allows for flexibility in matching computatidime and communication latency.

© 1999 Prentice-Hall, Appears in R.Buyydligh Performance Cluster Computing:
Programming and Applications, Vol 2 Prentice-Hall, pp395-417, ISBN 0-13-013785-5.

2.2 NEPSI AS A CLIENT SERVER ARCHITRECTURE

2.2.1 DATA DISTRIBUTION.
UDP provides for broadcast transmission of a pacgke ARBITER

onto a subnet. Two network configurations were erath

The first setup is where packets would be broadcast the //’N
arbiter and all return packets would be sent backhe , : C
arbiter for re-assembly and broadcast as shown in CDCSI_T) d T’D

Figure 0-1. The alternative setup was for eachukitar
to broadcast its results and reassemble the rasigtabal

broadcasts once all simulators had transmittedr thaia. ~ ~ ~ ——
Early experimental results showed that the firdusevas
more appropriate. It reduced the cost of, or feadéd, a Figure 0-1

number of operations better than the alternatipecically
the arbiter needs to be the hub for the followiegsons:

1. The arbiter needs to synchronize the start upethent simulators. For process migration
to be implemented a centralised register of prassgachines is required.

2. The arbiter needs to compile the separate signdsane message to be broadcast. If all
clients assemble their own packets then networffidravill increase dramatically. If a
central arbiter with 5 sub-nets is used then iy ordeds to send 5 broadcast messages (one
to each sub-net), if a more distributed systensedithen each node will have to transmit 5
packets (one to each sub-net). Thus if we haveotiésin the network we would have the
following number of packets

= central arbiter 5 broadcast messages + 1 from madd =15
= distributed control 5 messages from each node = 50
Of course, if a single sub-net is used then castalaout equal (10 pkts without arbiter,
11 pkts with an arbiter). Note too that a singleRJpacket is of limited size, so multiple
packets will be required once a large number ofagyneed to be transmitted over the
network. Since the number of machines on each subfienited and it is necessary to use
more than one subnet, we have adopted the ceptitaibiter model.

3. Once large simulations are run we need to detestdonflicts. There are two ways in
which this can be achieved. The arbiter can dcsitpeal detection or every node could do
it's own conflict detection through merging of badssignals from other nodes. The second
method generates more redundant computation, wdanhbe done in parallel with other
computation in the central arbiter method.

For these reasons the arbiter is the central pntall communication. This allows for
broadcast messages to be used rather than poiind as is used in other message passing
schemes such as PVM [12,17]. This increases phsailledramatically, which is of utmost
importance, although it is predicated on the tatahber of signals (G) being of the same order as
the number of signals per node (L), the networkloeads(H) & the number of sub-nets(S).

central arbiter S*(H+G)+N*(H+L)
distributed control S*N*(H+L)

2.3 OVERVIEW OF THE NEPSI NETWORK

NEPSI is a network. It is comprised of many padsh one relying on the others, and in total
all working together to perform the simulation. Tinext sections deal with the implementation of
each part of the network. We begin by looking & simulation engine, NEPSi ASIMUT, then we

© 1999 Prentice-Hall, Appears in R.Buyydiigh Performance Cluster Computing:
Programming and Applications, Vol 2 Prentice-Hall, pp395-417, ISBN 0-13-013785-5.

3

look at the arbiter, the daemons and finally theD¥Hparser used to split the description into leaf
cells.

2.3.1 NEPSI CLIENT ~ ASIMUT

As can be seen in Figure 0-2, a simple functionchdty wraps around the ASIMUT simulator.
This wrapper functionally is actually inside ASIMUTBs the simulator, as it stood, had no
interactive input or PLI. The wrapper function gsdts assigned signals from the broadcast packet
and sends its resultant signals back to the cdatrol

broadcast

Back to
Arbiter

)| Sim|— >

IMUTIU>TS
IMUVU>TES

Figure 0-2

2.3.2 THE ARBITER

The arbiter is the heart of the NEPSI infrastruetuit is responsible for arbitrating all
communication between the simulators and daemagsrd-0-3 displays all the communication
paths within the NEPSIi network. As can be seethaund communication from the arbiter takes
two forms, arbiter to daemon and arbiter to sinaurlalhe arbiter is responsible for initiating the
communications network. This is accomplished lsyiisg a “ping” to the daemons, arc one. On
receiving the ping command the daemons simply re$paith their daemon id-number, arc two.
The arbiter uses this information to establish Whi@emons are available and uses the response
times as a rough indicator of the load on the faglynachines. Given that we hawenodules to
be simulated, the arbiter will select the topmachines (in response time) as the hosts for the
simulators. If there are more modules to be siredldhan there are available machines, the arbiter
will increase the number of simulators per machmeccommodate the required. The required
number of simulators is then sent to the daemoarinthree. Arc’s three and four represent the
daemon interacting with the OS to invoke the fsshulator. The first simulator started on each
machine is then responsible for forking the desirethber of children, shown here as arc six. The
reasons for starting additional simulators on eaealhine using the simulator itself are twofold:

* We get a performance gain by the simulator clomisgjf instead of the child having to
parse and set up all the data structures: we lgehas from the memory manager.

» All the communication is sent to one port on a# thachines, and only one process can
be bound to a port, so the parent has to open fopés children before it forks.

The fork is represented by arc 6 in Figure 0-3. @alt then internal data structures are set up
and any children required have been created eanhaion process then informs the arbiter that
they are ready to begin simulation, arc 7. Thetarkhen transmits the simulation vector to the
parent simulators on each machine, arc 8, and #menp gives this to the child, arc 8a. All
simulators then send their result back to the arpérc 9. The arbiter then assembles the sigoals f
retransmission and sends them out again on arti8.process continues until the last test vector
has been simulated. Then the arbiter sends a spesiasector that informs all the simulators that
they should exit. Daemons remain alive, sleepirajtimg to start up the simulators again.

© 1999 Prentice-Hall, Appears in R.Buyydligh Performance Cluster Computing:
Programming and Applications, Vol 2 Prentice-Hall, pp395-417, ISBN 0-13-013785-5.

4

These test vectors are represented compactly sedbh byte reflects 4 signals. This allows us
to have a total of approximately 4500 signals paeket, depending upon the number of PE’s in the
design and the number of inter-PE signals.

Network cpnnection/s
/.

g
O] Ping

Returns demon #

.'.
R
T ®
;

Start sim #

Simulation
vector

Ready to start

Shell call to start sim

Result vector

Simulation
vector

Spawn required # of children

Ready to start

Result vector,

®

Figure 0-3: Communication flow diagram for NEPSi néwork.

The simulation cycle has been designed in suchyaasacommunication and calculation could be
interleaved as much as possible. As can be sedfngire 0-4 there is a delay slot after each
message is passed to the simulators where theeraibiwaiting for a response. As much of the
calculations needed to be performed has been rafedthese slots. Figure 0-4 illustrates the
operations carried out during the execution ofnauition session. A lot of the initialisation biet
data has been folded into the slots were the aristedle waiting for the responses from the
simulators. Most of the test vector is constrdatéilst waiting for the results of the presentleyc
This reduces the amount of processing time theearbeeds whilst the simulators are idle and
minimizes the sequential bottleneck of the simalaalgorithm.

© 1999 Prentice-Hall, Appears in R.Buyydiigh Performance Cluster Computing:
Programming and Applications, Vol 2 Prentice-Hall, pp395-417, ISBN 0-13-013785-5.

2.3.3 NEPSI DAEMONS

The NEPSi daemon is simply a small program thts :
as a remote shell. It has a specific port whidlsténs to and to
which requests are made.

155

2.4 COMMUNICATION MODEL

Communication in NEPSI is based directly on UD®, |a
unreliable communication medium in which packets aot
guaranteed to arrive and if they do they may aroweof order.
This sounds worse than it actually is. Packet Iss®ot as bad

Parse descriptior]

~

Ping Daemon

‘_

W ait for
reply’s

Calculate needed
simulators

{_

Request for

simulators

+

Initialise L
data structure

W aiting
for
responses

established and
first packet sent

All nodes
responded

correctly
|4

receive

Not all nodes
responded in

specified time All nodes

responded
correctly

Resend
message

Unsuccessfu
transmit
or receive 1

Not all nodes
responded in
specified time

Resen
message

Perform Rollback \‘ eceived
all resp es

+

vectorec
Uuwl

next vectq

All odesey arrive)

responaea

acths
o

]
Process ot all nodes
respones gs fespontesipinpses

pecified time

W aitihg

for|

Received all
,wsj;\

Transmit
fail 3

Figure 0-5: State transition diagram for arbiter communication model

as one might expect and this is a strength as rasch weakness of UDP and we have defined a

communications model for NEPSi which exploits this.

2.4.1 ANSWERS AS ACKNOWLEDGMENT

As UDP is an unacknowledged protocol, the sendegives no notification of whether the
packet arrived at its destination or not. This @ages the speed obtainable from UDP as packets can
be sent with having to wait for acknowledgment maskhat would double the network overheads.
So to make sure that our packets have arrived,seehe result as an acknowledgment. To facilitate

this it is necessary to number all packets witeguence number.

We only send one packet to each sub-net in thermsystherefore there will be varying number
of reply’s to each packet, as different subnetsehdiferent numbers of computers, and each
computer can have more than one simulation progest Figure 0-5 shows the state transition
diagram for the arbiters communication scheme. a&sle seen the arbiter simply transmits its data

© 1999 Prentice-Hall, Appears in R.Buyydligh Performance Cluster

Programming and Applications, Vol 2 Prentice-Hall, pp395-417, ISBN 0-13-013785-5.

Computing:

6

and waits for a reply. If all the nodes reply cotlg with the same sequence number, then it
proceeds to simulate another vector. All packeteived with the wrong sequence number are
ignored. If the time limit is reached and not athslators have replied correctly then we enter the
missed transmission state. A packet could have les¢ion the simulator side, or we may have lost
a packet on arbiter side. When this occurs we simgtend the last message. If the simulator
receives this second transmission it has either gdgefore and simulated it, or it didn’t receive

in the first place. If it has seen it before it pign retransmits its last result with the previous
sequence number. If it hasn’t seen it before themmulates it and sends the response. This is why
the arbiter can receive packets with the wrongusege number. The reason why we have so many
retries is that we need to know if a machine hasgiown (or is very busy). If we retransmit four
times unsuccessfully then we assume that a mablasgone down. We then enter damage control
mode where we Kill all the simulators and do abatk start. For brevity and clarity Figure 0-5 has
a large number of states involved in the rollbaxkcpss represented as one transition, similarly the
startup process has been omitted for clarity. Stiaée transitions for the simulator’'s side of the
communications scheme is very simple. It waits ereuntil it gets a message and replies to all
given messages, with the last result it generated.

2.4.2 CHECKPOINTING & ROLLBACKS

To make the system more secure with regard to éxegution times, it has been necessary to
implement a means by which checkpointing can bdempnted. At a predetermined time interval,
measured in simulation cycles simulated, the arltiEnsmits a special packet that instructs the
simulators to save their internal states to a fach simulator then saves its state to a file aith
unique name based on its node number. Theseafigestored in a centralized account which relies
upon the network file system (NFS) to save thesfid@ the one machine. If a rollback is deemed
necessary the arbiter then performs the followasds,

Instructs all simulators to terminate.

ensures that all simulators have terminated.

Pings the daemons

recalculates what simulators are required on witiakhines
asks the daemons to do a roll_start

begins processing again from roll back point.

The roIIback point is the simulation test vectormediately following the vector which
preceded the checkpoint. The simulators are natagnieed to be simulating the same node number
after a restart but this has no effect on simusats all the checkpoint files are stored in a e¢ntr
point from which they all have NFS access. Thisesod works well with two notable exceptions

» If the machine with the host account in which theakpoints are stored goes down then
the simulation cannot continue.
* All machines in the NEPSi network must reside withisingle NFS domain.

ok whNE

2.5 VHDL MODELS USED

The hardware we chose to simulate was the Tordwlral Processor [8] whichwas
designed to be used in Neural Network Experimendsitais theoretically infinitely scaleable. Large
extensive test files were available for the TNE arperienced users (e.g. the author) of the TNP
were available.

© 1999 Prentice-Hall, Appears in R.Buyydligh Performance Cluster Computing:
Programming and Applications, Vol 2 Prentice-Hall, pp395-417, ISBN 0-13-013785-5.

2.5.1 TNP PROCESSOR

Each of the modules in Figure 0-6 is written ashdvioural description. Interconnections be-
tween these modules is described in the top leunettsiral description. The modules range in size
from a single register to a 1024 sixteen bit menaorgy. The varying size of these modules allow
us to examine at what point the communication \ermmmputation tradeoff, favors switching to a
parallel implementation.

2.6 TESTS FOR TNP

As a small example of the kind of task the TNP asigned for, a vector dot product was
calculated for the majority of our tests. Figur& @utlines some of the stages involved in the
multiplication. A row of the first matrix is firsibaded into the array (stage 1 of diagram), then a
column of the second matrix is passed through theyavith a partial sum building up in each
element as the column is passed through

(stage two). Once this is completed all the iy
produc_ts are passed out with the last element ~N Y ~
summing the products as they pass and then
this is passed out (stage 4). This process is reg reg oo
then be repeated for all the remaining rows] []]
and columns, but to aid test turn around
times we only do the first row and column. ~ ~ ~ >
2.6.1 TNP ASSEMBLY TESTS e N " x
reg reg eece reg
Test programs were written for TNP D’/ D’/ D’/
arrays varying from 1 to 64 nodes. Thelsg K KD ED
programs were then used as the simulatjgn : 1024x16bit
vectors whilst the experimental variables n MEMORY -
: ; seop4 [TAG [\ T [s]
Wer.e ml\?nlpglate?, thef]_e being . ofT 5 reom] |y [E :
Number o] :cnac ines use r 0 o e
. umber of processes on eac¢ REG
machine DIQD\h 1 e
* Number of PE’s per simulator N 5
« Distance between simulators (dll 1 Figure O-7: Stages of m?trics mLId‘i lication
sims on campus, or some at a remote % H ; : B
campus)
These four variables and the ¢ Jonmod | 8T [| seer F RND]
combinations thereof provided for a large ADDER | [MULTIPLIER
array of experiments.
2.7 COMPUTING Figure 0-6

ENVIRONMENT

© 1999 Prentice-Hall, Appears in R.Buyydiigh Performance Cluster Computing:
Programming and Applications, Vol 2 Prentice-Hall, pp395-417, ISBN 0-13-013785-5.

8

The Computing environment at Flinders universitpased mainly on sun architecture machines
ranging from ELC’s through to Ultra Sparc equipEdyure 0-8 displays the network environment
here at Flinders university and shows brief detaflthe network at Adelaide University (Another
local university 15 km from Flinders university). tAtal of 6 subnets is available for experimental
purposes, five here at Flinders and one at Adelailee network is based on fiber optic backbone

with twisted pair coming out of unswitched hubsCASCO is used to do all the inter IP routing
between subnets and the external world.

2.8 INITIAL TESTS

The following results were obtained from runningimple test program/pattern file through a
simulated TNP array. The array consisted of 10 RiE® linear array. The output from each PE is
fed into the input of the next. Input to the ariayfrom within the pattern file and the output is
obtained from the I® PE. The NEPSi network consisted of 10 machine€ @ub-nets. Each
machine was minimally loaded (0.0-0.05) with nowa &aldrick being the exception. These had a
load of 1 to 1.1. The graph in Figure 0-9 detdis simulation times for a sequential (standard
ASIMUT) simulation of the PE array and the timedakior NEPSi to do the same simulation as
averaged over 10 runs. As can be seen simulatioestvaried extensively with “boomer” being the
fastest and “karl” being the slowest. NEPSi avedagt least half the execution times of most
machines, and being up to 5 times faster thanltiveest machine.

To compensate for load differences, a further &@aitons were run on each machine with
NEPSI running concurrently. This increased the loaccach machine but it was intended so as to

Sequential Times, independant runs

20 iz 4 |X-Terminals /@ |

250 +] []

200 +

150 +

100 +
5 | H

seconds

0.0m

boomer basil 15@@8#@.;5 ‘ 0@9‘.96.44,25 sybil | nepsi NEPSi+turing’
E] F] &) e =
‘
| ‘ ‘ 129.96.46.25 E
[|y =
129.127.8.25

Figure 0-8: Flinders and Adelaide network architectire (idealised)

be a crude way of maintaining some load consistéetyween the test runs performed on NEPSI
and the sequential version. As can be seen in &iQuk0 the concurrent runs were slowed down
with a consistent amount. From this we can assinaie the sequential times vary directly with the

© 1999 Prentice-Hall, Appears in R.Buyydligh Performance Cluster Computing:
Programming and Applications, Vol 2 Prentice-Hall, pp395-417, ISBN 0-13-013785-5.

9

load on each machine and the amount of physicaluress available to them. Since the NEPSI

Concurrent vs. Independent runs

300
- . [
@ Concurrent .)
O Independant Sequential run times, no memory
200 10000
(%2}
o
S 150
3
) 1000
100 E
T
<
50 A 8 100 + o
c
<]
(8] | |
[} -
0 - n]
g 2 z 3 3 B 10 1 g
<] %’ Q = 8 5]
S @ £ (S |]
Figure O- 1 =

1 2 4 8

16 32 64

Figure 0-11: Cycle times on “turing”

Number of PEs

Figure 0-12: Simulation times on “turing”

version is done in lock step, its simulation tim#l wirectly depend on the speed of the slowest
machine in the network. In both figures 5.1 and 32 see that the best “machine” (NEPSI) is
around 5 times faster than the slowest machine.nféehines are all either Sparcs or SuperSparcs,
but already the factor of two difference in powesmshmeant that the faster machines are
underutilized. The asterisked machines are pregefote comparison and were not part of the
original experiment. Karl was then supplanted lnty an UltraSparc, after the initial experiments.

2.9 VARYING NUMBERS OF SIMULATORS & PES

Once the initial tests had been conducted and r@ae@ the applicability of our concept, we
then moved onto slightly more complex testing. Tb#owing figures show the results for
sequential runs on “turing” using the simulatiactor for the simple counting test as we varied the

number of PEs simulated on the machine.

Average cycle times
4.50

4.00 +
3.50 +
3.00 +
2.50 +

Seconds

2.00 +
1.50 +
1.00 +
0.50 +

0.00 -

1 2 4 8
Number of PEs

16 32 614_

€
Pcgrnn et iy e or oy

Figure 0-13:Simulation times on “turing”

iy e s

Toriuwnyg

Average cycle times with 512 memory

9.00
8.00 +
7.00 +
6.00 +
5.00 +
4.00 +
3.00 +
2.00 +
1.00 +
0.00 -

Seconds real time

1 2 4 8

16 32 64

yeHigh Performance CHister°" Computing:
-Hall, pp395-417, ISBN 0-13-013785-5.

Figure 0-14:Simulation times on “turing”

10

Figure 0-11 shows the average simulation times“tiaring” and Figure 0-12 shows its
average cycle time. It should be noted that theusition times are given on a logarithmic scale.
The simulations were conducted using a reducedorersf the TNP PE, which had only one
memory location instead of 512 or 1024. Using tthh@al memory aided in implementation and

Runtimes, memories & Number of PEs
100000

ml
10000 +
m512
° 11024
£ 1000 f
T
<
(%2}
£ 100 {
(5
()
(7]
10 +
1- ‘ ‘ ‘
1 2 4 8 16 32 64
Number of PEs
Figure 0-15

development as simulator start times were sigmfigaeduced as can be seen in Figure 0-15.

The following diagrams display the simulation arydle times for a TNP array that uses 512
bytes of memory in each PE. At first one woulduass that simulating memory would be rather
fast, as we recall the simulation is an event bagadlator and as such must recalculate the interna
state of all BDD’s that have an input change sttgé.as all the memory is clocked every memory
location must be re computed. Bryant [3] points that simulating memories with BDD’s is not
efficient due to the high fanout that occurs asBB® tree grows. Furthermore we could see from
the memory usage of the simulator itself that tidDBepresentation of the memory is inefficient.
The memory usage of the simulator became extrermenwimulating 64 PEs with a 1024 word
memory, with the executable growing to over 218 mgn time, with the result that at some point

the process started to thrash and entered intotnoos I/O wait state. This happened on all
machines, but just when they started thrashingemiggd on how much actual memory and how

© 1999 Prentice-Hall, Appears in R.Buyydiigh Performance Cluster Computing:
Programming and Applications, Vol 2 Prentice-Hall, pp395-417, ISBN 0-13-013785-5.

11

much swap space they had. Given that these pexasso fork numerous children, the machines
are liable to crash under these conditions andingniests of this size was considered antisonial i
a shared resource environment. Therefore the ewpats with half the specified memory were
undertaken instead, as presented above.

2.10 MATRIX MULTIPLICATION ON TNP

Once we had finished implementing and testingotls@c simulator, we proceeded to extend
it. The rollback/checkpoint system was implemenieatket compression, auto-daemon selection
and top level preparsing/decomposition was addedlfze test file parser was developed. All these
things either helped make the simulator easieseoar made it more stable. These additions added
only a small amount to the start up times for ihg adder it added around 4 seconds, which was
largely due to the waits for the daemon startupésien. With all these facilities in place we caul
then perform the tertiary tests.

Simulation times whilst varying PE numbers

10000

Seconds

32 64

Number of PEs

boomer
turing

NEPSI
=

Machine

Figure 0-16: NEPSi and sequential version performig TNP matrix multiplication.

The results for these tests are presented in Fpb@ and Figure 0-17. Again we are using
a logarithmic scale and the machines displayednaant to represent the spectrum of the machines
used in the NEPSi network. It should be noted thatonly used 16 machines at a maximum,
therefore the 32 and 64 PE simulations requiretgaeh PE simulate 2 and 4 PEs respectively. As
can be seen NEPSI is actually slower than turinghfe simulations where there are less than 8 PEs
being simulated. The slowest machines like “manae#’ only half the speed of NEPSi for a single
PE simulation. This is due to the start up timeN&PSi which is comparatively larger for smaller
simulations. as can be seen in from Figure 0-16 tficit is quickly made up in the larger
simulations. Figure 0-17 details the cycle times tfee Matrix multiplication as given in Figure
0-16. This is a very interesting graph and shovetirditly where the break even points are for
NEPSI.

© 1999 Prentice-Hall, Appears in R.Buyydiigh Performance Cluster Computing:
Programming and Applications, Vol 2 Prentice-Hall, pp395-417, ISBN 0-13-013785-5.

12

As can be seen the cycle time for NEPSi is highan for “turing” when the TNP arrays
consist of less than 7 PEs. Comparing NEPSI dyréot“turing” is not a good metric. NEPSI is
constrained by the slowest machine in the netwlorkhe case above it is an ELC. What should
become apparent from the graph is that we canrolit@ performance of nearly twice that of an
ULTRA Sparc from servers that are now very welledatAfter we have an array larger than 7 PEs
NEPSIi becomes viable. What is also of intereltesslopes of the lines. The “turing” line is ngarl
completely straight, this proves simulation speediiectly related to the simulation size. However
if we observe the line for “boomer” we can see tihat line increases in slope as we increase the
number of PEs from 16 to 32. This shows the poihene we also start to run out of compute

Seconds per cycle, varied by number of PEs

100.00

—e— turing

—=— boomer

—a— basil
—>— manuel
—®— nui

o = yay

v

Seconds

1 2 4 8 16 32 64
Number of PEs Simulated

Figure 0-17: Cycle times for Matrix test vectors.

resources (physical memory). Therefore the timemalation will take is directly related to the
number of PE’s being simulated and the amount eé fiesources available for this computation.
Interestingly the line for NEPSI is relatively flantil we reach the 8 PE mark. This may be due to

© 1999 Prentice-Hall, Appears in R.Buyydligh Performance Cluster Computing:
Programming and Applications, Vol 2 Prentice-Hall, pp395-417, ISBN 0-13-013785-5.

13

three factors, firstly the arbiter selects the dastmachines first (network response plus some
parsing in the daemon), as we go past eight mashueestart to use the slower machines and thus
we increase the time required to simulate somaePEs. Examining Figure 0-10 reveals that there
are basically two levels of machine performanceilabie in the Flinders computer science
network. There are eight machines of relativelyt fasrformance (this includes “turing” and
“boomer” which are faster again), then there is $heond tier where a lot of the student servers
belong to and some ELC’s. These machine are nkaliyhe speed of the first tier machines. Once
we go over the 8 machine mark we start using tbwesl machines. This is clearly visible in Figure
0-17, it is the first kink in the graph on the NERBe. Secondly as we progress beyond 16 PE’s we
need to start doubling the number of PEs being Isited on a machine. Again we are doubling the
simulation load on the machines so that the graptirtues on the same slope as it did from the 8
PE mark. This increase in slope is not due to a&wverheads but is due to a resource shortage. If
more machines were available then the graph méerlaut again. Thirdly, there is an effect upon
the machine called “manuel” which is the NFS sefeethe directory in which the executables and
the test files are kept. This is the directoryvach all the checkpoint files are written. Themefo
when we are simulating large numbers of PEs wesgete NFS errors as the 64 simulators try to
read and write to the same directory/file.

Furthermore as the arbiter is on a fairly crowdaon®t when all the responses start coming
back from the simulators we may be flooding themoek, although there appears not to be any
significant increase in network collisions. Thisndae observed with the number of retries that are
needed for a simulation, these increase with thebau of PE’s being simulated. However, many
factors come into play here, including networkdpéhe load on the arbiter, the machine it is
running on and NFS server contention etc. It ig\Verd to determine the exact cause of network
behaviour as the experiments are conducted on lkrvgoacademic network which is subject to all
the trials and tribulations that students can ptitrough.

2.11 VARIABLE MACHINES, PROCESSES AND PES

To ascertain what effect simulation load has dmoughput a further test was carried out:
We varied the number of PEs in a simulator ovepecified range of array lengths. Then we
conducted the same set of test but we varied theauof simulators on each machine rather than
the number of PEs. Figure 0-18 shows the effettawing more than one simulator on a machine
(the array numbers were kept small so as to allomdgeneous servers to be used). The single PE
single simulator had the best average cycle tinsec#@n be seen the single process usually returns
the fastest average cycle times. However you watlce that the average for the 2 simulators per
machine is actually faster for the 8 PE simulativan for the one simulator version. This may be
caused by a quicker start time or just variatioth® network traffic. As can be seen, 4 simulators
per machine reduces the performance by aboutTal.directly shows the effect of the increase in
average cycle times for four simulators per maclasedisplayed in Figure 0-17. This does not
support the increase in average cycle time fromtoreo processes that is also evident in the same
figure. Network variation most likely is the cau#i@s point is taken up in section 0.

© 1999 Prentice-Hall, Appears in R.Buyydligh Performance Cluster Computing:
Programming and Applications, Vol 2 Prentice-Hall, pp395-417, ISBN 0-13-013785-5.

14

Average Cycle time for Varying Number of PEs with
Number of simulation processes

14
1o @ 1 simulation process — B

' M 2 simulation processes

1 +—— 04 simulation processes —
0.8

Seconds realtime

0.6
0.4 -
0.2 -
0 - } }
1 2 4

Number of PEs

Figure 0-18

© 1999 Prentice-Hall, Appears in R.Buyydiigh Performance Cluster Computing:
Programming and Applications, Vol 2 Prentice-Hall, pp395-417, ISBN 0-13-013785-5.

15

To find the relationship between communication aadhputation a further experiment was
undertaken where we measured the CPU time takea $onulator to perform a simulation, and we
compared this with the amount of CPU time usedhleydoncurrent version. We used the machines

CPU & Simulation Times
1000

900 +

800 +

—Average node's CPU usage
[—Arbitrators CPU usage (turing)
700 4+ I sequential CPU usage(manuel)
—&— NEPSitime

—m— Sequential time(manuel)

600 +

500 +

Seconds

400 +

300 +

200 +

100 +

1 2

Numbers of PEs

Figure 0-19

that were as evenly matched as possible, thus Wehad eight machines available. As can be seen
in Error! Reference source not found. we have been fairly successful in limiting the
communication time compared to calculation. Theatise between the NEPSI line and the bar is
the communication time and system overhead for NER8 the distance between the other line
and the bar is the system overhead for the se@lermdrsion. A speed up factor of about 6 is
evident again and furthermore we can see thatdherwnications overhead is about a third of the
time. The average node CPU usage is also giverthasdhdicates how much processing has been
interleaved by the distribution process.

© 1999 Prentice-Hall, Appears in R.Buyydligh Performance Cluster Computing:
Programming and Applications, Vol 2 Prentice-Hall, pp395-417, ISBN 0-13-013785-5.

16

2.12 ROLLBACK

The roll back mechanism was implemented through sanulator producing a save file at a
given point in the simulation. The saving of a atpwint takes approximately %2 a second,
apparently independent of the number of processasvied (the actual time is most likely hidden
in NFS delays and disk buffers). The rollback medta, can take anywhere between 6 and 15
seconds. The arbiter must make sure that all thaelators are dead before it can ask the daemon to
invoke a new set of simulations. When this occumnitive process migration takes place and the
arbiter will select the best machines that it reggifor the simulation. As can be imagined the
rollback process is quite costly and thus we neaddke sure that if we are going to do one we lose
the least amount of time.

2.13 MULTI CAMPUS SIMULATION

The use of servers at Adelaide university servethtaresting purpose. Adelaide university is
connected to Flinders university via a 31 megdbits The Flinders computer science network is
connected to this back bone via 2 other networkshbysing the network utility “ping: reveals that
we typically have a 5-8 millisecond round trip. Tinetwork here at Flinders is an unruly beast and
the network does get choked (especially when thel@ds is running a robot soccer simulation),
and on average the network delay is anywhere betwesd 4 ms.

The experiments run using the Adelaide machine sdawo statistically significant slow down
in the performance of NEPSi. Some large delaysuoed but these usually originate here at
Flinders so the simulation would have been affegtbdther the simulation was run here or not.
One disadvantage of using machines at Adelaidsaisitwe are to implement checkpoints and thus
migration, we need to keep a consistent copy dhalicheckpoints at both locations without NFS.

2.14 EFFECT OF MIGRATION / LOAD BALANCING

The migration code was added to NEPSI in an attamgbunteract the effects of increased
network traffic that is sustained for medium lersgtf time (such as student machines being used
for a class). When a machine reaches a certagh déd\activity the arbiter may decide to migrate th
simulation to another machine which is not as bdgys is implemented through the rollback-
checkpointing mechanism. The arbiter will ask sepaprocess on a machine to fork another child.
This is an extremely quick process. The simulatiode to be migrate performs its checkpoint at
the normal designated point. Then on the next dy@earbiter issues a special packet that informs
the appropriate parent to spawn a new child udmegcheck-point data from the to be spawned
process. Then on the next cycle everything consimge normal. Preliminary test show that this
process works but has not been tested to it'ssullé checkpoint takes approximately %2 a second
to perform, and a fork migration takes roughly % second as well. As was seen in section 0 the
roll back mechanism when activated can take anyevftem 6 to 15 seconds to do. Therefore the
fork method is far superior in time.

2.15 NETWORK TRAFFIC EFFECTS

Network traffic plays a very large role in this @ct. So too do machine loads. If a machine is
highly loaded then it cannot adequately servenlieming packets or respond in the allocated time
specified by the arbiter. This can then causerg, rehich may not actually be needed yet but the
arbiter assumes that it is. This time-out variablthus crucial to NEPSi’s performance. If set to
low the arbiter will send a retry too early, if $6b high then a missed packet will not be sent for
and extended period, which wastes time for all @ssors. Various methods were employed to try
to automatically determine a heuristic for the mati time-out. None particularly proved to be any

© 1999 Prentice-Hall, Appears in R.Buyydligh Performance Cluster Computing:
Programming and Applications, Vol 2 Prentice-Hall, pp395-417, ISBN 0-13-013785-5.

17

more successful than others. The methods tried areracreasing time out period, set the time-out
from the first packet received and an average. ridtevork fluctuations in a teaching environment
based on X-terminals is dramatic. A network thatsists of homogeneous dedicated workstations
should prove to far be less troublesome. Figug® @hows the average number of retries that are
encountered during a simulation with a varying namtf PE’s.

Retries Due to Number of PE's

300

250 +

200 +

150 +

Retries

100 +

50 +

0 * \ \
- o~ < o © o <t
- ® ©

Number of Pe's

Figure 0-20

3. Discussion

This project has achieved its major goals of expépthe utility of network enabled parallel
simulation in a very dynamic and unruly network ieonement. The NEPSIi simulator was
developed and the accompanying testing resourcesh&Ve observed in most cases a general
simulation speed increase by a factor of 5. Lasgaulations produce larger amounts of speed up
to a point. This point is governed not necessdmyl}communications contentions but by resource
contentions. Invariably we ran out of processorsinoreased the number of simulations per
machine which had a much more significant affecsjp@ed up factor than network overheads.

There are some measures possible which should vapttee results. The network here is
relatively lopsided and quite a number of the maesiused in the project are located on the same
subnet. The relatively fast machine used as th#earwas on this overused subnet and should
ideally have been located on a less populated mketnade, so that packets get through with less
collisions. Also, the simulator relies on the NH8 ystem so that all machines have a consistent
view of a central data repository. This howevemngethat the machine on which the repository
exists must service all the demands from the sitotdaas well as do any simulation that may have
been assigned to it. This became a problem wheweve conducting the 64 PE tests. Several NFS
errors would occur during the simulation and onoaipte of occasions this would cause the
simulator to go into damage control mode and itates roll-back, of course this only made things
worse and the whole simulation had to be aborféds is a problem out of our control and the NFS
errors experienced cannot be attributed to the latmwitself, it is at the mercy of the network
environment. To counteract this problem the sitoulaould be run so that when starting a
simulation session all the relevant files are copeethe local temp directory on each host. Thig wa
the files would be local and would stop any proldewith NFS. However this then presents a
problem for the checkpoint files in the event thatmachine went down, but mirroring could be
handled within a subnet if losing an entire sulweast deemed unlikely.

© 1999 Prentice-Hall, Appears in R.Buyydligh Performance Cluster Computing:
Programming and Applications, Vol 2 Prentice-Hall, pp395-417, ISBN 0-13-013785-5.

18

We also note that more useful speed-up figuresddoelobtained with a homogeneous network.
Also, while NEPSI has proven to be a a highly gffecimplementation technique for hardware, the
task allocation has been done in a very rudimentarywold also be possible to have different
functional entities on one processor and removethsent restriction that only one type of module
can be simulated on each machine, allowing meexivm in the placement of modules.

Further reduction of the amount of network trafiita single subnet should also be achievable:

1. Incorporate an arbiter into the daemon and hatransmit the message back to a central
arbiter. This is what PVM does in some circumstandmit as explained earlier this
increases the number of packets required. As we waen a large simulation is being
executed the number of packets returned to theearbicreases greatly and the subnet
on which it resides can get flooded.

2. The other alternative is to equip the server onctvtihe arbiter resides with multiple
network adapters so that it becomes a hub forithalation network. This will spread
the traffic presently on the arbiter's subnet asresgveral subnets. This becomes
particularly attractive when one considers that gao equip a PC with several Ethernet
cards for a very small outlay, and would reducentbigvork contentions considerably.

Using the communications functions developed irs throject, extending a commercial
simulator should be the next logical step. Comlgris with the above proposed extensions would
see a cheap extensible simulator than can makefussources that are usually thought to be too
slow to be of any practicable use. All this and encan be accomplished through employing
networked enabled parallel simulation.

4. References

[1] Amza C., Cox A. L., Dwarkadas S., Keleher Bu H., Rajamony R., Weimin Y.,
Zwaenepoel W., “Treadmarks Shared Memory Comgutn Networks of Workstations,”
Computer 18-28 February 1996.

[2] Barkley J., “NISTIR 5277 Comparing Remote Rydare Calls,”
http://nemo.ncsl.nist.gov/nistir/527@ctober 1993.

[3] Bryant R. E. “Bit-Level Analysis of an SRT Doer Circuit,” Technical report,
CMU-CS-95-140, Carnegie Mellon University, USA,iA@d8 1995.

[4] CAO_VLSI team, “ALLIANCE,” ftp://ftp.ibp.fr/ibp/softs/masi/alliance/

[5] Gupta S., & Pingali K., “Fast Compiled Logicn&ilation Using Linear Bdds,Cornell
University (TR95-1522)June 1995.

[6] IEEE., “1076-1993 IEEE Standard VHDL Languagefé&ence Manual,"EEE, New York,
New York, March 1988.

[7] IEEE., “1364-1995 IEEE Standard Description gaage Based on the Verilog (TM)
Hardware Description LanguagelEEE, New York, New York, March 1988.

[8]Jones S. R., Sammut K., “Learning in Lineastdlic Neural Network Engines: Analysis
and implementation,” IEEE Transactions on Nedteiworks Vol. 5, No. 4584 -593 July,
1994

[9] Johnson D. B. & Zwaenepoel W., “The Peregrirghiperformance RPC System,”
Software practice & Experience23 201-221February 93

© 1999 Prentice-Hall, Appears in R.Buyydligh Performance Cluster Computing:
Programming and Applications, Vol 2 Prentice-Hall, pp395-417, ISBN 0-13-013785-5.

19

[10] Kollak W., Rabenseifner R. & Reimann H. D.,RPC Tools Im Benchmark-
Vergleich: DEN-RPC, SUN-RPC, DCE RPC, sowie PVM,” White Paper.
Rechenzentrum Universitat Stuttgart, March 1993.

[11] Lu H., “Message Passing Versus Distributedr&tidemory on Networks of
Workstations,” Masters thesis, Rice Universiggtt report Rice Comp TR-250,
ftp cs.rice.edu/pub/treadmarks/papers.

[12] Geist A., Beguelin A., Dongarra J., Jiang WManchek R., & Sunderam V.,
“PVM: Parallel Virtual Machine, A User's Guide @nlutorial for Networked Parallel
Computing,” web version http://www.netlib.org/pvrb8bk/pvm-book.html, MIT Press Scientific
and Engineering Computation, ed. Janusz Kowallassachusetts Institute of Technology

1994
[13] Gropp W., & Lusk E., “User,s Guide for mpicnPortable Implementation of MPI,”
Technical Report MCS-TM-000 Argonne National Lediory, Mathmatics and
Computer Science Division University of Chicagi94.

[14] Postel J., “RFC-768 -- The User Datagram ¢&wok (UDP),”
ftp://nic.ddn.mil/rfc/rfc768.txt.

[15] Postel J., “RFC-791 -- The Internet Proto@B),”
ftp://nic.ddn.mil/rfc/rfc791.txt.

[16] Postel J., “RFC-793 -- The Transmission Calndrotocol (TCP),”
ftp://nic.ddn.mil/rfc/rfc793.txt.

[17] Rabenseifner R. & Schuch A., “ComparisonDE RPC, DFN RPC, ONC and
PVM,” In Alexander Schill (Ed.), DCE - The OSF Disuted Computing Environment,
International DCE Workshop, Proceeding8;46 Karlsruhe, Germany, Oct. 1993.

[18] Rabenseifner R., “The DFN Remote Proceduré Gadl for Parallel and Distributed
Applications,” Kommunikation in Veteilten Systemen - KiVS. '&litors U.
Huebner, K. Franke, Proceedings, Chemnitz-Zwicka, 22-24, 1995.

[19] Schmidt D. C., Harrison T., & Al-Shaer E., Bf@ct Oriented Components for High
speed Network Programming,” Proceedings of theCbsiference on Object-Oriented
Technologies. USENIX , Monterey, CA, June, 1995.

[20] Sunderam V. S., “PVM: A Framework for Parall8istributed Computing,”
Concurrency: Practice & Experience, Dec 1990.

© 1999 Prentice-Hall, Appears in R.Buyydligh Performance Cluster Computing:
Programming and Applications, Vol 2 Prentice-Hall, pp395-417, ISBN 0-13-013785-5.

