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1. Introduction 
Electronic devices are becoming increasingly larger, more integrated, powerful and difficult to 

design, so that simulation must play an ever increasing and important role. With these increasingly 
large systems, simulation times are actually getting relatively slower with regard to the target 
systems being simulated [5]. The aim of this project was to ascertain the benefits of using a LAN as 
host for a parallelized simulator of coarser grain than has been implemented previously.  

The artifacts simulated in this project are be parallel machines themselves. The choice of 
simulating parallel hardware comes from three factors, with the first two being able to affect the  
simulator’s load. These factors are 

1. Each Processing element (PE) can be varied in size/complexity, 
2. The total number of PE’s can be manipulated, 
3. This is to a real world problem faced by engineers designing parallel hardware. 

The design was primarily dictated by efficiency considerations. There are several ways in which 
network traffic can be minimised. The first is to use broadcast rather than point to point 
communication as much as possible, and we saved further on overheads by designing our protocol 
using UDP directly.  

 

2. NEPSi 
The Network Enabled Parallel Simulator (NEPSi) is the test bed for this project. It consists of a 

VHDL simulator augmented with communication primitives so that it can be distributed across a 
network of workstations.  

2.1 ASIMUT 
NEPSi is based on ASIMUT, a VHDL simulator which is part of the ALLIANCE CAD package 

from the CAO_VLSI team at MASI laboratory, Paris France [4].  The alliance CAD package is 
primarily intended as a teaching tool and as such supports only a subset of VHDL.  However, it has 
been used in serious applications by the team at MASI and several large projects have been reported 
using the package. Most industry standard packages are priced in the tens of thousands of dollars 
plus annual licenses and require high end workstations to do anything of a serious nature on them.  
ASIMUT on the other hand is happy to work with virtual memory, will run on a low end SPARC 
(an ELC at that) and comes in at a cost  we could afford:  nothing. 

 

2.1.1 CONCURRENT DISTRIBUTED PROCESSING 
NEPSi is a concurrent distributed simulator. By this we mean that the processes that comprise 

the simulator are not only spread across distributed machines, but that multiple copies of the 
simulator may also be run on each machine. Thus we not only have concurrency provided by the 
distribution process, but we also have concurrency provided through time sharing on each machine. 
This allows for flexibility in matching computation time and communication latency. 



 

© 1999 Prentice-Hall, Appears in R.Buyya, High Performance Cluster Computing: 
Programming and Applications, Vol 2, Prentice-Hall, pp395-417, ISBN 0-13-013785-5. 

2 

2.2 NEPSI AS A CLIENT SERVER ARCHITRECTURE 

2.2.1 DATA DISTRIBUTION. 
 UDP provides for broadcast transmission of a packet 

onto a subnet. Two network configurations were examined. 
The first setup is where packets would be broadcast from the 
arbiter and all return packets would be sent back to the 
arbiter for re-assembly and broadcast as shown in 

Figure 0-1.  The alternative setup was for each simulator 
to broadcast its results and reassemble the resultant global 
broadcasts once all simulators had transmitted their data. 
Early experimental results showed that the first setup was 
more appropriate. It reduced the cost of, or facilitated, a 
number of operations better than the alternative. Specifically 
the arbiter needs to be the hub for the following reasons: 

1. The arbiter needs to synchronize the start up of the client simulators. For process migration 
to be implemented a centralised register of processes/machines is required.  

2. The arbiter needs to compile the separate signals into one message to be broadcast. If all 
clients assemble their own packets then network traffic will increase dramatically. If a 
central arbiter with 5 sub-nets is used then it only needs to send 5 broadcast messages (one 
to each sub-net), if a more distributed system is used then each node will have to transmit 5 
packets (one to each sub-net). Thus if we have 10 nodes in the network we would have the 
following number of packets 

⇒ central arbiter 5 broadcast messages + 1 from each node =15 
⇒ distributed control 5 messages from each node = 50 

Of course, if a single sub-net is used then costs are about equal (10 pkts without arbiter, 
11 pkts with an arbiter). Note too that a single UDP packet is of limited size, so multiple 
packets will be required once a large number of signals need to be transmitted over the 
network. Since the number of machines on each subnet is limited and it is necessary to use 
more than one subnet, we have adopted the centralized arbiter model. 

3. Once large simulations are run we need to detect bus conflicts. There are two ways in 
which this can be achieved. The arbiter can do the signal detection or every node could do 
it’s own conflict detection through merging of bussed signals from other nodes. The second 
method generates more redundant computation, which can be done in parallel with other 
computation in the central arbiter method. 

 
For these reasons the arbiter is the central point for all communication. This allows for 

broadcast messages to be used rather than point to point as is used in other message passing 
schemes such as PVM [12,17]. This increases parallelism dramatically, which is of utmost 
importance, although it is predicated on the total number of signals (G) being of the same order as 
the number of signals per node (L), the network overheads(H) & the number of sub-nets(S). 

 
central arbiter      S*(H+G)+N*(H+L) 
distributed control  S*N*(H+L) 

2.3 OVERVIEW OF THE NEPSI NETWORK 
NEPSi is a network.  It is comprised of many parts each one relying on the others, and in total 

all working together to perform the simulation. The next sections deal with the implementation of 
each part of the network. We begin by looking at the simulation engine, NEPSi ASIMUT, then we 
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Figure 0-1 
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look at the arbiter, the daemons and finally the VHDL parser used to split the description into leaf 
cells. 

2.3.1 NEPSI CLIENT ~ ASIMUT 
As can be seen in Figure 0-2, a simple function logically wraps around the ASIMUT simulator. 

This wrapper functionally is actually inside ASIMUT, as the simulator, as it stood, had no 
interactive input or PLI. The wrapper function grabs its assigned signals from the broadcast packet 
and sends its resultant signals back to the controller.  

2.3.2 THE ARBITER 
The arbiter is the heart of the NEPSi infrastructure, it is responsible for arbitrating all 

communication between the simulators and daemons. Figure 0-3 displays all the communication 
paths within the NEPSi network.  As can be seen, outbound communication from the arbiter takes 
two forms, arbiter to daemon and arbiter to simulator. The arbiter is responsible for initiating the 
communications network.  This is accomplished by issuing a “ping” to the daemons, arc one.  On 
receiving the ping command the daemons simply respond with their daemon id-number, arc two.  
The arbiter uses this information to establish which daemons are available and uses the response 
times as a rough indicator of the load on the replying machines.  Given that we have n modules to 
be simulated, the arbiter will select the top n machines (in response time) as the hosts for the 
simulators. If there are more modules to be simulated than there are available machines, the arbiter 
will increase the number of simulators per machine to accommodate the required. The required 
number of simulators is then sent to the daemon in arc three. Arc’s three and four represent the 
daemon interacting with the OS to invoke the first simulator. The first simulator started on each 
machine is then responsible for forking the desired number of children, shown here as arc six. The 
reasons for starting additional simulators on each machine using the simulator itself are twofold: 

• We get a performance gain by the simulator cloning itself instead of the child having to 
parse and set up all the data structures: we get a bonus from the memory manager. 

• All the communication is sent to one port on all the machines, and only one process can 
be bound to a port, so the parent has to open pipes to it’s children before it forks.   

The fork is represented by arc 6 in Figure 0-3. Once all then internal data structures are set up 
and any children required have been created each simulation process then informs the arbiter that 
they are ready to begin simulation, arc 7. The arbiter then transmits the simulation vector to the 
parent simulators on each machine, arc 8, and the parent gives this to the child, arc 8a. All 
simulators then send their result back to the arbiter, arc 9. The arbiter then assembles the signals for 
retransmission and sends them out again on arc 8. This process continues until the last test vector 
has been simulated. Then the arbiter sends a special test vector that informs all the simulators that 
they should exit. Daemons remain alive, sleeping, waiting to start up the simulators again. 
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Figure 0-2 
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These test vectors are represented compactly so that each byte reflects 4 signals. This allows us 
to have a total of approximately 4500 signals in a packet, depending upon the number of PE’s in the 
design and the number of inter-PE signals. 

 
The simulation cycle has been designed in such a way as communication and calculation could be 
interleaved as much as possible. As can be seen in Figure 0-4 there is a delay slot after each 
message is passed to the simulators where  the arbiter is waiting for a response. As much of the 
calculations needed to be performed has been rolled into these slots. Figure 0-4 illustrates the 
operations carried out during the execution of a simulation session.  A lot of the initialisation of the 
data has been folded into the slots were the arbiter is idle waiting for the responses from the 
simulators. Most of the test vector is   constructed whilst waiting for the results of the present cycle.  
This reduces the amount of processing time the arbiter needs whilst the simulators are idle and 
minimizes the sequential bottleneck of the simulation algorithm. 
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Figure 0-3: Communication flow diagram for NEPSi network. 
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2.3.3 NEPSI DAEMONS 
 The NEPSi daemon is  simply a small program that acts 

as a remote shell. It has a specific port which it listens to and to 
which requests are made.  

2.4 COMMUNICATION MODEL 
 Communication in NEPSi is based directly on UDP, an 

unreliable communication medium in which packets are not 
guaranteed to arrive and if they do they may arrive out of order.  
This sounds worse than it actually is. Packet loss is not as bad 

as one might expect and this is a strength as much as a weakness of UDP and we have defined a 
communications model for NEPSi which exploits this. 

 

2.4.1 ANSWERS AS ACKNOWLEDGMENT 
As UDP is an unacknowledged protocol, the sender receives no notification of whether the 

packet arrived at its destination or not. This increases the speed obtainable from UDP as packets can 
be sent with having to wait for acknowledgment packets that would double the network overheads. 
So to make sure that our packets have arrived, we use the result as an acknowledgment. To facilitate 
this it is necessary to number all packets with a sequence number.  

We only send one packet to each sub-net in the system. Therefore there will be varying number 
of reply’s to each packet, as different subnets have different numbers of computers, and each 
computer can have  more than one simulation process on it. Figure 0-5 shows the state transition 
diagram for the arbiters communication scheme. As can be seen the arbiter simply transmits its data 
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Figure 0-5: State transition diagram for arbiter communication model 
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and waits for a reply. If all the nodes reply correctly, with the same sequence number, then it 
proceeds to simulate another vector. All packets received with the wrong sequence number are 
ignored. If the time limit is reached and not all simulators have replied correctly then we enter the 
missed transmission state. A packet could have been lost on the simulator side, or we may have lost 
a packet on arbiter side. When this occurs we simply resend the last message. If the simulator 
receives this second transmission it has either seen it before and simulated it, or it didn’t receive it 
in the first place. If it has seen it before it simply retransmits its last result with the previous 
sequence number. If it hasn’t seen it before then it simulates it and sends the response. This is why 
the arbiter can receive packets with the wrong  sequence number.  The reason why we have so many 
retries is that we need to know if a machine has gone down (or is very busy). If we retransmit four 
times unsuccessfully then we assume that a machine has gone down.  We then enter damage control 
mode where we kill all the simulators and do a rollback start. For brevity and clarity Figure 0-5 has 
a large number of states involved in the rollback process represented as one transition, similarly the 
startup process has been omitted for clarity.  The state transitions for the simulator’s side of the 
communications scheme is very simple. It waits forever until it gets a message and replies to all 
given messages, with the last result it generated.  

  

2.4.2 CHECKPOINTING & ROLLBACKS 
To make the system more secure with regard to long execution times, it has been necessary to 

implement a means by which checkpointing can be implemented. At a predetermined time interval, 
measured in simulation cycles simulated, the arbiter transmits a special packet that instructs the 
simulators to save their internal states to a file. Each simulator then saves its state to a file with a 
unique name based on its node number.  These files are stored in a centralized account which relies 
upon the network file system (NFS) to save the files on the one machine. If a rollback is deemed 
necessary the arbiter then performs the following tasks, 

1. Instructs all simulators to terminate. 
2. ensures that all simulators have terminated. 
3. Pings the daemons 
4. recalculates what simulators are required on which machines 
5. asks the daemons to do a roll_start 
6. begins processing again from roll back point. 

The rollback point is the simulation test vector immediately following the vector which 
preceded the checkpoint.  The simulators are not guaranteed to be simulating the same node number 
after a restart but this has no effect on simulators as all the checkpoint files are stored in a central 
point from which they all have NFS access. This scheme works well with two notable exceptions 

• If the machine with the host account in which the checkpoints are stored goes down then 
the simulation cannot continue. 

• All machines in the NEPSi network must reside within a single NFS domain. 
 

2.5 VHDL MODELS USED 
The hardware we chose to simulate was the Toroidal Neural Processor [8] whichwas 

designed to be used in Neural Network Experiments and it is theoretically infinitely scaleable. Large 
extensive test files were  available for the TNP and experienced users (e.g. the author) of the TNP 
were available.  
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2.5.1 TNP PROCESSOR 
Each of the modules in Figure 0-6 is written as a behavioural description. Interconnections be-

tween these modules is described in the top level structural description. The modules range in size 
from a single register to a 1024 sixteen bit memory array.  The varying size of these modules  allow 
us to examine at what point the communication versus computation tradeoff, favors switching to a 
parallel implementation.  

2.6 TESTS  FOR TNP 
As a small example of the kind of task the TNP was designed for, a vector dot product was 

calculated for the majority of our tests.  Figure 0-7 outlines some of the stages involved in the 
multiplication. A row of the first matrix is first loaded into the array (stage 1 of diagram), then a 
column of the second matrix is passed through the array with a partial sum building up in each 
element as the column is passed through 
(stage two). Once this is completed all the 
products are passed out with the last element 
summing the products as they pass and then 
this is passed out (stage 4). This process is 
then be repeated for all the remaining rows 
and columns, but to aid test turn around 
times we only do the first row and column.  

2.6.1 TNP ASSEMBLY TESTS 
Test programs were written for TNP 

arrays varying from  1 to 64 nodes. These 
programs were then used as the simulation 
vectors whilst the experimental variables 
were manipulated, these being  

• Number of machines used 
• Number of processes on each 

machine 
• Number of PE’s per simulator 
• Distance between simulators (all 

sims on campus, or some at a remote 
campus) 

 These four variables and the 
combinations thereof provided for a  large 
array of experiments. 
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Figure 0-6 
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Figure 0-7: Stages of matrics multiplication 
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The Computing environment at Flinders university is based mainly on sun architecture machines 
ranging from ELC’s through to Ultra Sparc equiped. Figure 0-8 displays the network environment 
here at Flinders university and shows brief details of the network at Adelaide University (Another 
local university 15 km from Flinders university). A total of 6 subnets is available for experimental 
purposes, five here at Flinders and one at Adelaide.  The network is based on fiber optic backbone 
with twisted pair coming out of unswitched hubs. A CISCO is used to do all the inter IP routing 
between subnets and the external world. 

 

2.8 INITIAL TESTS 
The following results were obtained from running a simple test program/pattern file through a 

simulated TNP array. The array consisted of 10 PE’s in a linear array. The output from each PE is 
fed into the input of the next. Input to the array is from within the pattern file and the output is 
obtained from the 10th  PE. The NEPSi network consisted of 10 machines on 4 sub-nets.  Each 
machine was minimally loaded (0.0-0.05) with nova and baldrick being the exception. These had a 
load of 1 to 1.1. The graph in Figure 0-9 details the simulation times for a sequential (standard 
ASIMUT) simulation of the PE array and the time taken for NEPSi to do the same simulation as 
averaged over 10 runs. As can be seen simulation times varied extensively with “boomer” being the 
fastest and “karl” being the slowest.  NEPSi averaged at least half the execution times of most 
machines, and being up to 5 times faster than the slowest machine.  

To compensate for load differences, a further 10 iterations were run on each machine with 
NEPSi running concurrently. This increased the load on each machine but it was intended so as to 

be a crude way of maintaining some load consistency between the test runs performed on NEPSi 
and the sequential version. As can be seen in Figure 0-10 the concurrent runs were slowed down 
with a consistent amount. From this we can assume that  the sequential times vary directly with the 
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Figure 0-8: Flinders and Adelaide network architecture (idealised) 
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load on each machine and the amount of physical resources available to them. Since the NEPSi 

version is done in lock step, its simulation time will directly depend on the speed of the slowest 
machine in the network. In both figures 5.1 and 5.2  we see that the best “machine” (NEPSi) is 
around 5 times faster than the slowest machine. The machines are all either Sparcs or SuperSparcs, 
but already the factor of two difference in power has meant that the faster machines are 
underutilized. The asterisked machines are presented for comparison and were not part of the 
original experiment. Karl was then supplanted by turing, an UltraSparc, after the initial experiments. 

2.9 VARYING NUMBERS OF SIMULATORS & PES 
Once the initial tests had been conducted and had proved the applicability of our concept, we 

then moved onto slightly more complex testing. The following figures show the results for 
sequential runs on “turing” using the  simulation vector for the simple counting test as we varied the 
number of PEs simulated on the machine.  
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Figure 0-11: Cycle times on “turing” 
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Figure 0-12: Simulation times on “turing” 
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Figure 0-13:Simulation times on “turing” 
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Figure 0-14:Simulation times on “turing” 
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Figure 0-11 shows the average simulation times for “turing” and Figure 0-12 shows its 
average cycle time. It should be noted that the simulation times are given on a logarithmic scale. 
The simulations were conducted using a reduced version of the TNP PE, which had only one 
memory location instead of 512 or 1024.  Using the trivial memory aided in implementation and 

development as simulator start times were significantly reduced as can be seen in Figure 0-15.  
 
The following diagrams display the simulation and cycle times for a TNP array that uses 512 

bytes of memory in each PE.  At first one would assume that simulating memory would be rather 
fast, as we recall the simulation is an event based simulator and as such must recalculate the internal 
state of all BDD’s that have an input change state. But as all the memory is clocked every memory 
location must be re computed.   Bryant [3] points out that simulating memories with BDD’s is not 
efficient due to the high fanout that occurs as the BDD tree grows. Furthermore we could see from 
the memory usage of the simulator itself that the BDD representation of the memory is inefficient. 
The memory usage of the simulator became extreme when simulating 64 PEs with a 1024 word 
memory, with the executable growing to over 218 meg at run time, with the result that at some point 

the process started to thrash and entered into a continuos I/O wait state.  This happened on all 
machines,  but just when they started thrashing depended on how much actual memory and how 
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much swap space they had.  Given that these processes also fork numerous children, the machines 
are liable to crash under these conditions and running tests of this  size was considered antisocial in 
a shared resource environment. Therefore the experiments with half the specified memory were 
undertaken instead, as presented above. 

 
  

2.10 MATRIX MULTIPLICATION ON TNP 
 Once we had finished implementing and testing the basic simulator, we proceeded to extend 

it. The rollback/checkpoint system was implemented, packet compression, auto-daemon selection 
and top level  preparsing/decomposition was added and the test file parser was developed.  All these 
things either helped make the simulator easier to use or made it more stable. These additions added 
only a small amount to the start up times for the ring adder it added around 4 seconds, which was 
largely due to the  waits for the daemon startup/selection. With all these facilities in place we could 
then perform the tertiary tests.  

 

The results for these tests are presented in Figure 0-16 and Figure 0-17. Again we are using 
a logarithmic scale and the machines displayed are meant to represent the spectrum of the machines 
used in the NEPSi network. It should be noted that we only used 16 machines at a maximum, 
therefore the 32 and 64 PE simulations required that each PE simulate 2 and 4 PEs respectively.  As 
can be seen NEPSi is actually slower than turing for the simulations where there are less than 8 PEs 
being simulated. The slowest machines like “manuel” are only half the speed of NEPSi for a single 
PE simulation.  This is due to the start up time for NEPSi which is comparatively larger for smaller 
simulations. as can be seen in from Figure 0-16 this deficit is quickly made up in the larger 
simulations. Figure 0-17 details the cycle times for the Matrix multiplication as given in Figure 
0-16. This is a very interesting graph and shows distinctly where the break even points are for 
NEPSi. 
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Figure 0-16: NEPSi and sequential version performing TNP matrix multiplication. 
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 As can be seen the cycle time for NEPSi is higher than for  “turing” when the TNP arrays 

consist of less than 7 PEs.  Comparing NEPSi directly to “turing” is not a good metric. NEPSi is 
constrained by the slowest machine in the network. In the case above it is an ELC. What should 
become apparent from the graph is that we can obtain the performance of nearly twice that of an 
ULTRA Sparc from servers that are now very well dated. After we have an array larger than 7 PEs 
NEPSi becomes viable.  What is also of interest is the slopes of the lines. The “turing” line is nearly 
completely straight, this proves simulation speed is directly  related to the simulation size. However 
if we observe the line for “boomer” we can see that the line increases in slope as we increase the 
number of PEs from 16 to 32. This shows the point where we also start to run out of compute 

resources (physical memory). Therefore the time a simulation will take is directly related to the 
number of PE’s being simulated and the amount of free resources available for this computation. 
Interestingly the line for NEPSi is relatively flat until we reach the 8 PE mark. This may be due to 
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Figure 0-17: Cycle times for Matrix test vectors. 
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three factors, firstly the arbiter selects the fastest machines first (network response plus some 
parsing in the daemon), as we go past eight machines we start to use the slower machines and thus 
we increase the time required to simulate some of the PEs. Examining Figure 0-10 reveals that there 
are basically two levels of machine performance available in the Flinders computer science 
network. There are eight machines of relatively fast performance (this includes “turing” and 
“boomer” which are faster again), then there is the second tier where a lot of the student servers 
belong to and some ELC’s. These machine are nearly half the speed of the first tier machines.  Once 
we go over the 8 machine mark we start using the slower machines. This is clearly visible in Figure 
0-17, it is the first kink in the graph on the NEPSi line. Secondly as we progress beyond 16 PE’s we 
need to start doubling the number of PEs being simulated on a machine. Again we are doubling the 
simulation load on the machines so that the graph continues on the same slope as it did from the 8 
PE mark.  This increase in slope is not due to network overheads but is due to a resource shortage. If  
more machines were available then the graph may flatten out again. Thirdly, there is an effect upon 
the machine called “manuel” which is the NFS server for the directory in which the executables and 
the  test files are kept. This is the directory to which all the checkpoint files are written. Therefore 
when we are simulating large numbers of PEs we get some NFS errors as the 64 simulators try to 
read and write to the same directory/file.  

 
Furthermore as the arbiter is on a fairly crowded subnet when all the responses start coming 

back from the simulators we may be flooding the network, although there appears not to be any 
significant increase in network collisions. This can be observed with the number of retries that are 
needed for a simulation, these increase with the number of PE’s being simulated. However, many 
factors come into play here, including  network load, the load on the arbiter,  the machine it is 
running on and NFS server contention etc. It is very hard to determine the exact cause of network 
behaviour as the experiments are conducted on a working academic network which is subject to all 
the trials and tribulations that students can put it through. 

 

2.11 VARIABLE MACHINES, PROCESSES AND PES 
 To ascertain what effect simulation load has on  throughput a further test was carried out: 

We varied the number of PEs in a simulator over a specified range of array lengths. Then we 
conducted the same set of test but we varied the number of simulators on each machine rather than 
the number of PEs.  Figure 0-18 shows the effect of having more than one simulator on a machine 
(the array numbers were kept small so as to allow homogeneous servers to be used). The single PE 
single simulator had the best average cycle time. As can be seen the single process usually returns 
the fastest average cycle times. However you will notice that the  average for the 2 simulators per 
machine is actually faster for the 8 PE simulation than for the one simulator version.  This may be 
caused by a quicker start time or just variation in the network traffic. As can be seen, 4 simulators 
per machine reduces the performance by about half. This directly shows the effect of the increase in 
average cycle times for four simulators per machine as displayed in Figure 0-17. This does not 
support the increase in average cycle time from one to two processes that is also evident in the same 
figure.  Network variation most likely is the cause, this point is taken up in section 0.    
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 To find the relationship between communication and computation a further experiment was 
undertaken where we measured the CPU time taken for a simulator to perform a simulation, and we 
compared this with the amount of CPU time used by the concurrent version. We used the machines 

that were as evenly matched as possible, thus we only had eight machines available. As can be seen 
in Error! Reference source not found. we have been fairly successful in limiting the  
communication time compared to calculation. The distance between the NEPSi line and the bar is 
the communication time and system overhead for NEPSi and the distance between the other line 
and the bar is the system overhead for the sequential version.  A speed up factor of about 6 is 
evident again and furthermore we can see that the communications overhead is about a third of the 
time. The average node CPU usage is also given and this indicates how much processing has been 
interleaved by the distribution process.  
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2.12 ROLLBACK 
 The roll back mechanism was implemented through each simulator producing a save file at a 

given point in the simulation.  The saving of a checkpoint takes approximately ½ a second, 
apparently independent of the number of processes involved (the actual time is most likely hidden 
in NFS delays and disk buffers). The rollback mechanism, can take anywhere between 6 and 15 
seconds. The arbiter must make sure that all the simulators are dead before it can ask the daemon to 
invoke a new set of simulations. When this occurs primitive process migration takes place and the 
arbiter will select the best machines that it requires for the simulation.  As can be imagined the 
rollback process is quite costly and thus we need to make sure that if we are going to do one we lose 
the least amount of time.  

2.13 MULTI CAMPUS SIMULATION 
The use of servers at Adelaide university served an interesting purpose. Adelaide university is 

connected to Flinders university via a 31 megabits link. The Flinders computer science network is 
connected to this back bone via 2 other network hops. Using the network utility “ping: reveals that 
we typically have a 5-8 millisecond round trip. The network here at Flinders is an unruly beast and 
the network does get choked (especially when the AI class is running a robot soccer simulation),  
and on average the network delay is anywhere between 1 and 4 ms.  

The experiments run using the Adelaide machine showed no statistically significant slow down 
in the performance of NEPSi.  Some large delay’s occurred but these usually originate here at 
Flinders so the simulation would have been affected whether the simulation was run here or not.  
One disadvantage of using machines at Adelaide is that if we are to implement checkpoints and thus 
migration, we need to keep a consistent copy of all the checkpoints at both locations without NFS. 

 

2.14 EFFECT OF MIGRATION / LOAD BALANCING 
The migration code was added to NEPSi in an attempt to counteract the effects of increased 

network traffic that is sustained for medium lengths of time (such as student machines being used 
for a class).  When a machine reaches a certain level of activity the arbiter may decide to migrate the 
simulation to another machine which is not as busy. This is implemented through the rollback-
checkpointing mechanism. The arbiter will ask a parent process on a machine to fork another child. 
This is an extremely quick process. The simulation node to be migrate performs its checkpoint at 
the normal designated point. Then on the next cycle the arbiter issues a special packet that informs 
the appropriate parent to spawn a new child using the check-point data from the to be spawned 
process. Then on the next cycle everything continues as normal.  Preliminary test show that this 
process works but has not been tested to it’s fullest. A checkpoint takes approximately ½ a second 
to perform, and a fork migration takes roughly ½ - 1 second as well. As was seen in section 0 the 
roll back mechanism when activated can take any where from 6 to 15 seconds to do. Therefore the 
fork method is far superior in time. 

 

2.15 NETWORK TRAFFIC EFFECTS 
Network traffic plays a very large role in this project. So too do machine loads. If a machine is 

highly loaded then it cannot adequately serve the incoming packets or respond in the allocated time 
specified by the arbiter.  This can then cause a retry, which may not actually be needed yet but the 
arbiter assumes that it is.  This time-out variable is thus crucial to NEPSi’s performance.  If set too 
low the arbiter will send a retry too early, if set too high then a missed packet will not be sent for 
and extended period, which wastes time for all processors.  Various methods were employed to try 
to automatically determine a heuristic for the optimal  time-out. None particularly proved to be any 
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more successful than others. The methods tried were an increasing time out period, set the time-out 
from the first packet received and an average.  The network fluctuations in a teaching environment 
based on X-terminals is dramatic.  A network that consists of homogeneous dedicated workstations 
should prove to far be less troublesome.  Figure 0-20 shows the average number of retries that are 
encountered during a simulation with a varying number of PE’s. 
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Figure 0-20 

3. Discussion 
This project has achieved its major goals of exploring the utility of network enabled parallel 

simulation in a very dynamic and unruly network environement. The NEPSi simulator was 
developed and the accompanying testing resources. We have observed in most cases a general 
simulation speed increase by  a factor of 5.  Larger simulations produce larger amounts of speed up 
to a point. This point is governed not necessarily by communications contentions but by  resource 
contentions.  Invariably we ran out of processors or increased the number of simulations per 
machine which had a much more significant affect on speed up factor than network overheads.   

There are some measures possible which should improve the results. The network here is 
relatively lopsided and quite a number of the machines used in the project are located on the same 
subnet.  The relatively fast machine used as the arbiter was on this overused subnet and should 
ideally have been located on a less populated network node, so that packets get through with less 
collisions. Also, the simulator relies on the NFS file system so that all machines have a consistent 
view of a central data repository.  This however means that the machine on which the repository 
exists must service all the demands from the simulators as well as do any simulation that may have 
been assigned to it. This became a problem when we were conducting the 64 PE tests. Several NFS 
errors would occur during the simulation and on a couple of occasions this would cause the 
simulator to go into damage control mode and initiate a roll-back, of course this only made things  
worse and the whole simulation had to be aborted.  This is a problem out of our control and the NFS 
errors experienced cannot be attributed to the simulator itself, it is at the mercy of the network 
environment.  To counteract this problem the simulator could be run so that when starting a 
simulation session all the relevant files are copied to the local temp directory on each host. This way 
the files would be local and would stop any problems with NFS. However this then presents a 
problem for the checkpoint files in the event that a machine went down, but mirroring could be 
handled within a subnet if losing an entire subnet was deemed unlikely. 
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We also note that more useful speed-up figures could be obtained with a homogeneous network. 
Also, while NEPSi has proven to be a a highly effective implementation technique for hardware, the 
task allocation has been done in a very rudimentary. It wold also be possible to have different 
functional entities on one processor and remove the present restriction that only one type of module 
can be simulated on each machine,  allowing more freedom in the placement of modules. 

Further reduction of the amount of network traffic on a single subnet should also be achievable:  
1. Incorporate an arbiter into the daemon and have it transmit the message back to a central 

arbiter. This is what PVM does in some circumstances, but as explained earlier this 
increases the number of packets required. As we saw, when a large simulation is being 
executed the number of packets returned to the arbiter increases greatly and the subnet 
on which it resides can get flooded. 

2. The other alternative is to equip the server on which the arbiter resides with multiple 
network adapters so that it becomes a hub for the simulation network. This will spread  
the traffic presently on the arbiter’s subnet across several subnets. This becomes 
particularly attractive when one considers that you can equip a PC with several Ethernet 
cards for a very small outlay, and would reduce the network contentions considerably.  

Using the communications functions developed in this project, extending a commercial 
simulator should be the next logical step. Combining this with the above proposed extensions would 
see a cheap extensible simulator than can make use of resources that are usually thought to be too 
slow to be of any practicable use. All this and more can be accomplished through employing 
networked enabled parallel simulation. 
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