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Abstract 

In the evaluation of models, theories, information retrieval 
systems, learning systems and neural networks we must deal 
with the ubiquitous contingency matrix of decisions versus 
events. In general this is manifested as the result matrix for a 
series of experiments aimed at predicting or labeling a series 
of events. The classical evaluation techniques come from 
information retrieval, using recall and precision as measures. 
These are now applied well beyond this field, but 
unfortunately they have fundamental flaws, are frequently 
abused, and can prefer substandard models. This paper 
proposes a well-principled evaluation technique that better 
takes into account the negative effect of an incorrect result 
and is directly quantifiable as the probability that an informed 
decision was made rather than a random guess. 

Introduction 
Throughout the cognitive sciences we frequently deal with 
the ubiquitous contingency matrix of decisions versus 
events. While this is in its own right a matter for research in 
the study of gambling and risk taking and any theory of 
rational choices, we here focus on its practical applications. 
It is perhaps better known in its demeaned or standardized 
guises of the covariance and correlation matrices, but here 
we treat its practical manifestation as the result matrix for a 
series of experiments aimed at labeling a series of events. 

The labeling may be performed by a human amateur or 
expert, or by a knowledge-based system or expert system. It 
may be the result of the application of a black box neural 
network, or a prediction of a formally specified theory. In all 
cases there is some event that has to be predicted or labeled, 
and some source of predictions or labels. We assume that 
the event is not a random variable but there is a theoretical 
basis of predicting or identifying it based on its context – 
which may without loss of generality precede, accompany or 
succeed the event. We will designate the label, predictor or 
prediction P and the true label, class or result R, as is 
traditional in designing and evaluating decision trees. 

Specific examples include predicting the outcome of a 
horse race based on history and form, decision support 
systems that decide eligibility for a government allowance, 
parsers or taggers that give syntactic or semantic labels to 
the words of a sentence, neural nets that aim to identify a 
psychological condition from real-time single-trial 
electroencephalograms, search engines that aim to retrieve 
specified documents or web pages based on query words. 

The first of these examples has inspired the approach to 
be presented in this paper, while the last has spawned the 
techniques and terminology that are presently used for 
evaluating the tabulated results.  

Recall, Precision and Accuracy 
In information retrieval, such as web search, search criteria 
such as keywords and the documents returned are then 
evaluated for relevance.  The proportion of relevant 
documents that is returned is called recall.  The proportion 
of documents returned that are relevant is called precision.  
This classic situation corresponds to a binary decision 
problem: result and prediction labels are either relevant or 
irrelevant, yes or no, + or −.  

A supervised learning system has similar labels but 
actually trains with known result labels and compares the 
results against the predicted labels. An unsupervised 
learning or classification system automatically invents a 
number of classes and we can then associate these classes 
with their most common prediction and assess them in the 
same way. In each case both binary and multiple 
classifications are meaningful, although the unsupervised 
case has an additional issue in that a different number of 
classes, K, may be determined rather than the number of 
classes expected, C. 

The search problem assumes that there are a specified 
number of documents (class 1) that satisfy the criteria and 
may be found by the search process, and the others don't 
(class 2). This binary task thus gives us a four cell result 
matrix: if +P indicates the number of times that we 
predicted a + label (success) and +R is the times the actual 
result was a + label, then the four cell contingency matrix 
counts are |+P+R| (P true and R true – also known as TP for 
True Positive), |−P−R| (P false and R false – also  known as 
TN for True Negative), |+P−R| (False Positive/FP), |−P+R| 
(False Negative/FN) and it has marginal sums |+P|, |−P|, |+R| 
and |−R| where |+P| + |−P| = |+R| + |−R| = N: 

 
 +R −R  
+P 42 18 60 
−P 28 12 40 
 70 30 100 

 
The recall (≡ sensitivity ≡ tpr) measure is simply the 

proportion of all such instances available that are identified 
correctly, whilst the precision is the proportion of all 
predictions that are identified correctly. The difference 
between these is in the denominator – precision is 
|+P+R|/|+P| ≡ pR(c=1|l=1) and recall is |+P+R|/|+R| ≡ 
pP(l=1|c=1). The problem here is that we have two measures 
of fitness rather than one, and neither of them incorporates 
any penalty for making an error: the |+P−R| (FP) and |−P+R| 
(FN) cells correspond to type 1 and type 2 error with rates 
fpr ≡ FP/|−R| (≡ fallout) and fnr ≡ FN/|+R/ resp. 
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These errors are often taken account of by limiting the 
acceptable range of type 1 error to less than 5%, and either 
ignoring type 2 error or limiting it to a an acceptable range 
of up to 20%, but there is no penalty attached to the errors.  
These figures correspond to 95% precision and 80% recall, 
but often cognitive science experiments yield results with 
much greater error ranges and much lower precision and/or 
recall, and the problem is that there is usually a trade off of 
recall against precision.  

The most common solution in information retrieval, 
machine learning and neural network research is some sort 
of average accuracy. Here we discuss the standard 
approaches, and show that they fail to capture meaningfully 
the extent to which informed decisions are being made. 

Diverse Definitions of Accuracy 
The mean precision across all prediction labels and the 

mean recall across result labels both give us the same 
accuracy figure, |+P+R| + |−P−R| / N, since the cases must 
be correctly weighted by their marginal probabilities. This 
definition of accuracy is formally known in statistics as the 
Rand Index (Rand, 1971) and may also be extended to 
providing an accuracy figure for unsupervised clustering 
even when the number of clusters determined by the system 
does not match the evaluation model. It gives equal weight 
to correct identification of both cases and applies to any 
classification of classes. 

A closely related measure of accuracy is the Jaccard or 
Tanimoto Index |+P+R| / (N − |−P−R|) which treats positive 
and negative data asymmetrically and is designed for 
occurrence statistics in which non-occurrence is not 
regarded as being of interest.  

The standard average of recall and precision (Manning & 
Schutze, 1999) is a harmonic mean which in its most general 
forms provide a weight α ≡ β2 to determine the bias towards 
recall, r, or precision, p, but is more commonly used with  
α = 0.5 (which we will assume henceforth in this paper in 
weighting r and p): 
                       F = p · r / (α p + (1−α) r) 

 = 1 / (α / r + (1−α) / p) 

 = 2 p · r / (p +  r) (α = 0.5) 
This so-called F-factor is usually viewed as providing a 

bias towards the lower of the precision and recall. These are 
relative frequencies and it is effectively taking the mean of 
their reciprocal intervals ('wavelengths') as distinct measures 
of error rate (per +-case and per +-decision). There is no 
clear justification for the use of an α other than 0.5. Rather it 
seems to be used as a bias to reflect the realities that most 
models have lower recall than precision whilst the 0.5 model 
gives them equal weight. 

The complements of recall and precision, inverse recall 
(specificity) and inverse precision, may be used to assess the 
accuracy in predicting non-occurence, and an inverse or 
negative F-factor may be derived using the corresponding 
formula. The positive and negative F-factors may 
furthermore be combined analogously in terms of their 
average error rates to produce a single accuracy figure. 

An alternate method of combining recall, precision, 

inverse recall and inverse precision figures is to use the 
geometric mean.  Noting that these precision and recall 
figures are actually conditional probabilities, the geometric 
mean may be interpreted as a perplexity measure 
corresponding to an arithmetic mean of the conditional 
information, the usual weighted form of which is the 
conditional entropy based on log precision: 
        H(R|P)  =  – ∑ l∈P pP(l) ∑ c∈R pR(c|l) log(pR(c|l))  

Note that the conditional entropy measure does not 
assume that the model has correctly determined the number 
of classes, C. Rather, K, the number of classes induced, may 
differ from C, the number of pre-labeled classes (Cover and 
Thomas, 1990). The binary case is C=K=2, R = P = {+, −} 
or {1, 2}. This gives us a direct information-theoretic 
measure of the goodness of the classification, which may be 
regarded as a measure of parsimony – it is a measure of the 
expected number of bits of information required in addition 
to the predictive model in order to correctly identify a case. 

These measures of accuracy thus correspond to the 
(weighted) arithmetic mean of recall or precision, the  
harmonic F-factor corresponds to the (weighted) arithmetic 
mean of case and prediction error rate, and the geometric 
mean corresponds to the (weighted) arithmetic mean of the 
case and prediction conditioned information.  

The correct use of any of these averages to give an overall 
accuracy figure requires weighting them by the expected 
number of instances or predictions per label. 

Label Bias 
Part of the problem with recall and precision is that it 
encourages model developers to bias their models. For 
example in part-of-speech (POS) tagging it is common to 
ignore the possibility that nouns without a distinct verb form 
(invention<−invent, speak−>speaker/speech) may be used as 
verbs (Entwisle and Powers, 1998). 

Many systems are poor at determining POS from 
syntactic cues alone and rely heavily on a lexicon to specify 
that (say) 'water' and 'shoulder' are nouns. If the error rate in 
determining the POS of a word is higher than the occurrence 
rate of a verbal usage of a noun, they can actually increase 
their accuracy by specifying that the word is always a noun. 
The occasional sentence where I 'water the garden' or 
'shoulder someone aside' will have less impact on the 
accuracy figures than the impact of incorrectly labeling 
some of the nouns as verbs. 

This problem is an instance of a more general label bias 
problem (Lafferty, McCallum and Pereira, 2002) which 
actually leads to a bias against cognitively, linguistically, 
and physiologically plausible models as illustrated above. 

In an ideal model the distribution of predictions |+P|:|−P| 
will reflect the a priori distribution of the data, |+R|:|−R|. 
Thus the marginal probabilities for the label  
l ∈ P, pP(l), and those for the corresponding actual class  
c ∈ R, pR(c), should be the same:  

pP(1) ≡ |+P|/N   =   pR(1) ≡ |+R|/N, 
pP(2) ≡ |−P|/N   =   pR(2) ≡ |−R|/N. 

If we consider the problem of correctly identifying a noun 
and know that 90% of the usages are nouns and 10% are 
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verbs, but we always say 'noun', then we get the following 
contingency matrix: 

 
 +R −R  
+P 90 10 100 
−P 0 0 0 
 90 10 100 

 
Note that with this trivial model the recall is 100% (90/90 

nouns are identified correctly) and precision is determined 
by the prior probability of a noun as 90% (90/100 cases 
identified as nouns are correct). 

An appropriately parameterized learning model or 
artificial neural network (ANN) should automatically tend to 
produce label predictions that mimic the observed 
distribution of classes.  However many hand-crafted or 
hand-tuned models or systems take advantages of the 
weaknesses of recall and precision to achieve better 
“accuracy” by cheating as above. 

In a supervised feedforward neural network (perceptron, 
backpropagation, etc.) the attribution of error to inputs in 
proportion to their influence, as given by their input weights, 
leads to stabilization at weights that give rise to an output 
distribution that matches the input distribution irrespective 
of whether there are learnable/learned patterns or not in the 
input. The same is true of unsupervised, self-organizing and 
associative networks based on Hebbian plasticity.  

Sometimes a training set will be overtly “standardized” to 
avoid bias by the proportions of the different training 
examples either by equalizing the number of + and – cases 
or by discounting their weight. For example, if + and – 
occur with a 7:3 skew, + and – may be trained to output 
values of 1/7 and 1/3 respectively rather than 1, and negative 
cases where + or –  doesn't occur to output values of −1/3 
and −1/7 respectively rather than −1.  

However, generally a learning system should aim to 
match the input distribution, and in a competitive learning 
system or ANN the thresholds can usually be adjusted to 
achieve such a match. A system that doesn't have a matching 
distribution cannot hope to achieve 100% accuracy across 
all conditions, but will have non-zero cross-correlations. 

Bookmaker Odds 
We now motivate an alternative accuracy measure using a 

betting scenario that contrasts with this recall and precision 
analysis by providing a penalty for errors based on fair (or 
rational) odds determined from the historical probability of 
each “horse” winning. This specifies what you win if you 
win as well as what you lose if you lose – in a ratio inverse 
to the ratio of probabilities.  So an offer of odds of X:Y (or 
X/Y) for a horse means that if you (your horse) wins you 
win X, while if you lose you lose Y, and with fair odds this 
would indicate that the probability of winning is Y/(X+Y) 
and the probability of losing is X/(X+Y) and the expected 
gain is XY/(X+Y) – YX/(X+Y) = 0.  

In empirical cognitive science, however, we do not in 
general know the costs of errors nor can we expect them to 
exactly follow the underlying probability distributions. For 
convenience we assume here that the odds are specified in 
percent rather than the usual reduced integer form, although 

we express them in reduced form in our spreadsheets. 
While we have used a gambling rationale here, 

speculative investing fits exactly the same model and a basic 
principal of portfolio theory is to diversify in accordance 
with the perception of risk, with risk being used to estimate 
returns in technical analysis (as opposed to fundamental 
analysis based on external factors).  On the other hand, 
failing to directly penalize errors – as with precision, recall, 
F-factor and conditional entropy – leads to arbitrage issues 
(in financial markets) or the possibility of a “Dutch book” 
(in gambling), violating the principal of rational choice.  

This means that it is possible to adopt a strategy that 
guarantees winning some amount even in the absence of any 
“edge” or theory of the causal or historical factors involved.  

As we illustrated with our POS example, this is the trick 
that enables speech recognizers and parsers to quote 
unrealistic error rates, recall and precision – if you are trying 
to decide between two spellings or two part of speech tags 
for a word, and always choose the more common one, you 
will get a higher precision than mere guessing. Viz. if X>Y 
and you choose X you will win X−Y>0 percent of the time. 

We show in this paper that our Bookmaker evaluation 
technique assesses guessing (random choice) as giving us 0 
gain, perfectly correct performance as giving us maximum 
gain and perfectly incorrect performance as giving us 
maximum loss. Moreover making a perfect correct decision 
G% of the time and guessing otherwise gains us G% of our 
maximum gain.  Conversely making a perfectly incorrect 
decision G% of the time and guessing otherwise loses us 
G% of our maximum loss. Moreover this generalizes from 
the binary case to the K choice case where there are actually 
K−1 wrong labels for any case – noting that in this case the 
maximum loss will in general be less than the maximum 
gain as the penalty is different according to precisely which 
incorrect choice is chosen. Also we can recover independent 
gain/guess factors G(l) = B(l) for each decision label l. 

Bookmaker thus provides us with a measure of 
informedness – what percentage of the time we are making 
an informed decision versus guessing. It also tells us when 
we use information to choose incorrectly: training to noise, 
superstitious learning or overtraining decreases B(l). 

The Bookmaker measure has been implemented in Excel 
for the binary and ternary cases, and a general version for 
any number of cases has been implemented in Matlab and 
has been used to evaluate research results in information 
retrieval, EEG, vision processing and speech processing 
experiments. (Electronic form of Fig.1 is active spreadsheet. 
Matlab/Octave code is available from author on request.) 

Analysis of the Binary Case 
The paradigmatic use of odds is in horse racing where a 
Bookmaker offers you odds like 2:1 or 1:2 on a particular 
horse in a race that will in general have more than two 
horses. When she offers you odds of 2:1 (2/1) it means she 
thinks your horse is at least twice as likely to lose as to win, 
and so you will receive twice your bet plus your original 
stake if it wins. Odds of 1:2 (1/2, or 2:1 against) means that 
she thinks the odds are 2:1 against her and that your horse is 
twice as likely to win as lose so you will receive half your 
bet plus your original stake if it wins. 
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For the binary case we assume there are just two horses 
the probability of horse 1 winning (R+) is W% – so the odds 
we expect are L:W where L% = 100% – W%. On the track 
this would be reduced to a similar but smaller ratio 
involving smaller integers. We will also assume a fixed 
reduction factor k. If the odds are fair and we are guessing 
our expected gain/loss for guessing is $0. 

We initially assume that we will always bet $W on horse 1 
if our system predicts +P, a win for horse 1 – and we win $L 
if we are right. Otherwise (−P) we will bet $L on horse 2 as 
the system predicts horse 2 will win and horse 1 will lose  – 
and win $W if we are right. 

This means we have a payoff of $L if we correctly bet on 
horse 1 and otherwise we lose our stake of $W.  Conversely, 
we win $W if we correctly bet on horse 2 and otherwise lose 
our stake of $L. In terms of our contingency table for the 
decision as to whether horse 1 will win or not, we have the 
following payoffs and each event has the same amount 
riding in the pool (we have anted up $L and the bookie $W 
or vice versa, which add absolutely to $100):  

 
 +R −R  
+P $L ($W) 100 
−P ($L) $W 100 

Our net actual winnings or losses will reflect the 
percentage of the time we are using definitive information to 
choose the correct horse (row) rather than just guessing:   
           B    =   ∑ l∈P pP(l) ∑ c∈R pPR(l,c) w(c|l),  

where     w(c|l)   =   +(1− pR(c)) / k  (c = l), 
 =   −(1− pR(c)) / k (c ≠ l). 

If negative this indicates the extent to which we are using 
available information to make an incorrect decision, rather 
than guessing. We will set k so that the expected payoff is 
$1 for correct bets, a loss of $1 for incorrect bets, and an 
expected $0 overall for guessing as we will verify below. 

Given k = pR(c)·(1− pR(c)) we find  w(c|l) = ±1 / pR(c) and 
we can see that we bet $1/L to win $1/W for horse 1, and 
$1/W to win $1/L for horse 2, consistent with their 
respective odds of L:W and W:L. Since the probability of a 
win for horse 1 is W, expected winnings are W · $1/W = 1 
for model one (perfect play) and similarly for horse 2 we 
expect L · $1/L = 1 when betting correctly with model one. 
Thus the model is set up so that with perfect play (model 
one) we stand to win $1 on a given horse on average.  

This is illustrated in Figure 1 (but odds are shown in a 
reduced form that add to 10 rather than as percentages that 
add to 100) and follows directly from the linearity of the 
payoff formula. Figure 1 shows four distinct decision 
models. The first chooses randomly, the second makes 
perfect decisions, the third follows model two G% of the 
time (perfect play) and model one the rest of the time 
(random guess). The total percentage of cases in each cell in 
the decision matrix is the sum of the G% of the decisions 
that follow model two and the 100−G% of the decisions that 
follow model one. Due to the linearity of the payoff 
calculation the same applies to the payoff matrix, so that B = 
G% – given guessing has an expected payoff of $0 whilst 
the perfect model has an expected payoff of  $1 as ensured 
by setting k appropriately. 

Since our bookmaker odds are defined so as to be zero 
sum, guessing gives no advantage to either party and the 
expected (long term average) gain is $0. The expected 
winnings on horse 1 is +W · $1/W and the expected loss is 
−L · $1/L (when we bet on 1 but 2 wins) which sum to $0 

Thus the percentage of bets we win is reflected directly in 
the dollars we win and also directly reflects the proportion 
of the time, G%, that we are betting in accordance with a 
perfect play model.  

In model three the expected payoff for each decision we 
make is the same for each horse and reflects our making an 
informed correct decision G% of the time in each case, with 
each row of the payoff matrix showing the same profit 
margin of G(l) = B, the average across all decisions.  In the 
binary case, our formula simplifies to B = recall – fallout = 
tpr – fpr = G(0) = invrecall – invfallout = tnr – fnr = G(1). 

The fourth model used in Figure 1 makes an incorrect 
decision (labels reversed) H% of the time, showing a loss 
B = −H% (due to the symmetry of the binary case). 

Note the similarity between the Bookmaker payoff 
formula and the conditional entropy formula that uses 
information as its currency, with w(c|l) = log(1/pR(c))/pP(l). 
This weighting is however uniformly non-negative, so does 
not exhibit analogous properties.  

Analysis of the General Case 
The extension of the bookmaker evaluation formula to more 
than two choices, C=K>2, is complicated by the fact that 
there are multiple wrong choices, but according to the 
bookmaker-odds metaphor, the penalty for losing is 
independent of which other horse wins. 

The generalized Bookmaker payoff formula is thus: 
                      B =   ∑ l∈P pP(l)

 
∑ c∈R pPR(l,c) w(c|l), 

where       w(c|l)  =   +1 / pR(l)   (c = l), 

 =   −1 / (1 – pR(l)) (c ≠ l).  

Note that this defines the same weighting for a binary 
decision as the previous formula, and in general a profit B≥0 
continues to estimate G%, the percentage informed correct 
decision. This is because the penalty for making an incorrect 
decision is applied irrespective of which incorrect decision 
is made and fair bookmaker odds reflecting the distribution 
probabilities are designed to be zero sum – that is to say 
there is no advantage to either party from guessing or 
strategy.  Any consistent gain G% is thus due to an edge – 
making good use of available information: informedness. 

In the binary case, G was independent of the predicted 
label l so that G(l) = ∑ c∈R pPR(l,c) w(c|l) was constant 
independent of the chosen label. This is not necessarily 
going to be the case for C>2 as it may be that some classes 
are noise-affected or more confusable than others so we 
derive less information and depend more on chance in 
allocating these labels. We illustrate this later. 

In the same way, a loss B<0 no longer directly estimates 
H%, the percentage informed incorrect decision. This arises 
because we must make a further (random) choice different 
from the correct choice as determined by the informed 
model, and each of these possibilities has a lower (but non-
zero) probability and so a different penalty for an incorrect 
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100 N Probability Distribution   Input Areas are designated in inverse blue like this
0% 70% 30% Predicted AvPrecision Precision IPrecision

Decision 80% 56 24 80 70%
Probability 20% 14 6 20 30%

Actual 70 30 100 Accuracy
AvRecall 62% F(0.5) IF(0.5) AvF(0.5)

Recall 80% F(0.5) 74.67%
IRecall 20% IF(0.5) 24.00%

Model 1 Bookmaker  Odds 0% AvF(0.5) 52.50%
Weighted 7 3 Won G(0.5) IG(0.5) AvG(0.5)

$0.00 $8.00 -$8.00 $0.00 G(0.5) 74.83%
$0.00 -$2.00 $2.00 $0.00 IG(0.5) 24.49%
$0.00 $6.00 -$6.00 $0.00 AvG(0.5) 59.85%

100 N Probability Distribution
100% 70% 30% Predicted AvPrecision Precision IPrecision

Decision 70% 70 0 70 100%
Probability 30% 0 30 30 100%

Actual 70 30 100 Accuracy
AvRecall 100% F(0.5) IF(0.5) AvF(0.5)

Recall 100% F(0.5) 100.00%
IRecall 100% IF(0.5) 100.00%

Model 2 Bookmaker  Odds 100% AvF(0.5) 100.00%
Weighted 7 3 Won G(0.5) IG(0.5) AvG(0.5)

$7.00 $10.00 $0.00 $10.00 G(0.5) 100.00%
$3.00 $0.00 $10.00 $10.00 IG(0.5) 100.00%

$10.00 $10.00 $10.00 $10.00 AvG(0.5) 100.00%

100 N Probability Distribution
15% 70% 30% Predicted AvPrecision Precision IPrecision

Decision 79% 58.1 20.4 78.5 74%
Probability 22% 11.9 9.6 21.5 45%

Actual 70 30 100 Accuracy
AvRecall 68% F(0.5) IF(0.5) AvF(0.5)

Recall 83% F(0.5) 78.25%
IRecall 32% IF(0.5) 37.28%

Model 3 Bookmaker  Odds 15% AvF(0.5) 63.30%
Weighted 7 3 Won G(0.5) IG(0.5) AvG(0.5)

$1.18 $8.30 -$6.80 $1.50 G(0.5) 78.38%
$0.32 -$1.70 $3.20 $1.50 IG(0.5) 37.80%
$1.50 $6.60 -$3.60 $1.50 AvG(0.5) 67.00%

100 N Probability Distribution
-15% 70% 30% Predicted AvPrecision Precision IPrecision

Decision 73% 47.6 24.9 72.5 66%
Probability 28% 22.4 5.1 27.5 19%

Actual 70 30 100 Accuracy
AvRecall 53% F(0.5) IF(0.5) AvF(0.5)

Recall 68% F(0.5) 66.81%
IRecall 17% IF(0.5) 17.74%

Model 4 Bookmaker  Odds -15% AvF(0.5) 37.94%
Weighted 7 3 Won G(0.5) IG(0.5) AvG(0.5)

-$1.09 $6.80 -$8.30 -$1.50 G(0.5) 66.82%
-$0.41 -$3.20 $1.70 -$1.50 IG(0.5) 17.76%
-$1.50 $3.60 -$6.60 -$1.50 AvG(0.5) 46.41%

            Figure 1:  Spreadsheet showing 0%, 100%, +15% and - 15% chance models comparing Bookmaker 
Profit with Precision, Recall, Rand Accuracy, F-factor and unweighted Geometric Mean.

(Within Word double click to use spreadsheet, right click to import into Excel.)
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Table 1: All 500 occurrence of train and dog in the Brown corpus, with sense tf and df counts. 
 

A. 127:37 dog as animal B. 2:2 negative dog metaphor C. 2:2 top dog D. 1:1 dogleg 
E. 16:14 dogma/dogmatic F. 1:1 dogtrot G. 4:3 hot dog H. 9:1 dog as cam 
I. 5:5 dogged/follow doggedly J. 2:2 dog in plant name K. 11:3 dog in place name L. 1:1 dog in product name 
M. 229:87 train as teach N. 75:42 railway train O. 8:4 wagon train P. 5:1 train of dress Q. 2:1 train as aim 
 

choice.  Their loss is maximized if they back the most 
probable incorrect horse, since the favorite has the least 
favorable odds and gives the most profit to the bookmaker 
when we lose, as we must. 

Both positive and negative values of B have been seen in 
supervised learning systems. However, the latter is very 
rare, occurring only with very poor learning models that 
behave worse than chance. 

In the case of unsupervised learning or classifications, a 
negative value tells us the classes have not been labeled 
optimally.  In the binary case this only affects the sign,  
G% = −H%, whilst in the general case the classes should be 
permuted to maximize the sum of the diagonal of the 
contingency matrix, or simply to maximize G%.  

If the number of classes found, K, does not equate with 
the number expected, C, then combinations rather than 
permutations need to be explored. 

Selection, Abstention and an Example Evaluation 
In real life, it is important to know when to stay out of the 
market or not to take a bet.  Rather than guessing when you 
don't have the information to make a good decision, it is 
better to refrain from doing so. In a clustering context, often 
the largest cluster will be a cluster which the available 
attributes were simply not able to tease apart. In this 
situation it desirable to have K>C and ignore such catch-all 
classes. 

The Bookmaker may be used in this case too – simply 
apply as usual to the cases but assign zero weight (cost or 
penalty) to cases classified in an ignored class. Alternatively 
ignored classes and labels that are only present in an ignored 
class may be omitted and the Bookmaker calculation 
executed on a contingency matrix of the remaining n cases, 
matching the best class for each retained label. The 
probabilities found will then all be conditioned on the 
criterion for inclusion, but the true recall (r) and 
informedness (B) may be found by multiplying them by n/N 
where N is the original number of cases. 

Like the cheat of assuming the most likely answer, this 
acknowledges that there are some things we aren’t good at.  
But Bookmaker won’t be influenced by that form of 
guessing or any other. Rather, each prediction c has a value 
G(c) that indicates how informed the decision is, whilst 
1−G(c) indicates how much pure guesswork is involved. 

Table 1 shows 17 sense classes for the words dog and 
train, possibly followed by other letters. Exactly 500 such 
occurences were found in the 500 2000 word document 
extracts that constitute the Brown corpus. An additional 
index document (501) and class (Z) were added for technical 
reasons – this corresponds to the introduction of an index 
context (many documents returned by multiword web 
searches tend to have the form of a dictionary or index). 21 

words related to the primary meanings of dog/N, train/N, 
and train/V (classes A, M and N) were used to provide 
context to cluster these 501 occurences using AutoClass 
(Cheeseman and Stutz, 1995).  

A classification into 18 classes was reduced to a 12x12 
contingency matrix with 170 cases after finding which 
induced class had the highest probability of predicting 
which label, combining equally good classes, and 
eliminating the catchall classes that did not predict any label 
best. Bookmaker, recall, precision, and means were 
calculated for the 12 classes along with a weighted average: 

 

% A  B  E  G H I K M N O P Z wav 
r 100 3 33 7 13 10 33 100 100 8 13 20 
p 35 100 100 33 25 100 25 33 24 25 100 100 

34 

B 100 -24 32 -2 5 4 32 100 100 1 -2 18 86 
F 52 5 50 11 17 18 29 50 39 13 22 33 18 
G 60 16 58 15 18 32 29 58 49 14 35 45 31 

 
Note that the F and G class means lie between p and r but 

that B is strongly influenced by r. The average, Bwav, shows 
that where a classification is made it is an informed decision 
86% of the time. Since only 170 out of 500 cases (34%) 
were classified, B (and r) must be discounted by 34% so that 
overall informedness is estimated at 0.86*0.34 = 29%. 

The negative values of B(l) indicate where superstitious 
labelings dominate and we are doing worse than chance so 
should discard the classes (and/or guess) to improve Bwav. 
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