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Abstract

In the evaluation of models, theories, informati@trieva
systems, learning systems and neural networks wst deal
with the ubiquitous contingency matrix of decisioversus
events. In general this is manifested as the resattix for a
series of experiments aimed at predicting or laigel series
of events. The classical evaluation techniques cdrm
information retrieval, using recall and precisia raeasures.
These are now applied well beyond this field, but
unfortunately they have fundamental flaws, are desdly
abused, and can prefer substandard models. Thigr pap
proposes a well-principled evaluation techniquet thetter
takes into account the negative effect of an irextrresult
and is directly quantifiable as the probabilityttha informed
decision was made rather than a random guess.

I ntroduction

Throughout the cognitive sciences we frequentlyl aath
the ubiquitous contingency matrix of decisions uers
events. While this is in its own right a matter fesearch in
the study of gambling and risk taking and any theof
rational choices, we here focus on its practicglliaptions.
It is perhaps better known in its demeaned or statizied
guises of the covariance and correlation matribes,here
we treat its practical manifestation as the restrix for a
series of experiments aimed at labeling a serieveifits.

Recall, Precision and Accuracy

In information retrieval, such as web search, dearieria
such as keywords and the documents returned are the
evaluated for relevance. The proportion of relévan
documents that is returned is caliegtall. The proportion

of documents returned that are relevant is cabkextision
This classic situation corresponds to a binary giegi
problem:result and prediction labelsare either relevant or
irrelevant, yes or no, + or —.

A supervised learning system has similar labels but
actually trains with known result labels and conagathe
results against the predicted labels. An unsupedvis
learning or classification system automatically ents a
number of classes and we can then associate theses
with their most common prediction and assess theitiné
same way. In each case both binary and multiple
classifications are meaningful, although the unstped
case has an additional issue in that a differemblbar of
classesK, may be determined rather than the number of
classes expecte@,

The search problem assumes that there are a sgpkcifi
number of documents (class 1) that satisfy theergaitand
may be found by the search process, and the otlwars
(class 2). This binary task thus gives us a four result
matrix: if +P indicates the number of times that we

The |abe|ing may be performed by a human amateur d?redicteda + label (SUCCGSS) and +R is the times the actual

expert, or by a knowledge-based system or expstesy It
may be the result of the application of a black mexiral
network, or a prediction of a formally specifie@tiny. In all
cases there is some event that has to be prediciabeled,
and some source of predictions or labels. We asdhate
the event is not a random variable but there isearetical
basis of predicting or identifying it based on dsntext —
which may without loss of generality precede, acgany or
succeed the event. We will designate the labeljigiar or
prediction P and the true label, class or resultaR,is
traditional in designing and evaluating decisiares.
Specific examples include predicting the outcomeaof

horse race based on history and form, decision atipp

systems that decide eligibility for a governmenowhnce,
parsers or taggers that give syntactic or semdaailbiels to
the words of a sentence, neural nets that aim datiiy a
psychological condition from real-time single-trial
electroencephalograms, search engines that airattieve
specified documents or web pages based on queswor

The first of these examples has inspired the agbroa
be presented in this paper, while the last has sedwhe
techniques and terminology that are presently uied
evaluating the tabulated results.

result was a + label, then the four cell contingency matr
counts are [+P+R| (P true and R true — also knawiPafor
True Positive), |-P-R| (P false and R false — ddeown as
TN for True Negative), |+P—R| (False Positive/HPR+R|
(False Negative/FN) and it has marginal sums |+P], |[+R|
and |-R| where |+P| + |-P| = |+R| + |-R} =

+R -R
+P 42 18 60
-P 28 12 40
70 30 100

The recall (= sensitivity= tpr) measure is simply the
proportion of all such instances available thatidemntified
correctly, whilst theprecision is the proportion of all
predictions that are identified correctly. The difince
between these is in the denominator — precision is
[+P+R|/|[+P|= pr(c=1]=1) and recall is |+P+R|/|+R¥
pe(I=1fc=1). The problem here is that we have two measures
of fitness rather than one, and neither of thenoriparates
any penalty for making an error: the |+P-R| (FR) P +R|
(FN) cells correspond to type 1 and type 2 errahwates
fpr = FP/|-R| € fallout) andfnr = FN/|+R/ resp.
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These errors are often taken account of by limiting
acceptable range of type 1 error to less then &nd either
ignoring type 2 error or limiting it to a an accaipe range

of up to 204, but there is no penalty attached to the errorsmean may be

These figures correspond to%9recision and 8% recall,
but often cognitive science experiments yield rsswlith
much greater error ranges and much lower precisimtior
recall, and the problem is that there is usualtyade off of
recall against precision.

The most common solution in information retrieval,

machine learning and neural network research iseseont

of average accuracy. Here we discuss the standal

approaches, and show that they fail to capture mgauly
the extent to which informed decisions are beingena

Diver se Definitions of Accuracy

The mean precision across all prediction labels tued
mean recall across result labels both give us tes
accuracy figure, |[+P+R]| + |-P-R| / N, since theeganust
be correctly weighted by their marginal probakekti This
definition of accuracy is formally known in staitst as the

inverse recall and inverse precision figures isute the
geometric mean. Noting that these precision arwdllre
figures are actually conditional probabilities, tipeometric
interpreted as a perplexity measure
corresponding to an arithmetic mean of the conditio
information, the usual weighted form of which iseth
conditional entropy based on log precision:
HRIP) = =% 1oe Pe(l) 2 cor Pr(CT) log(pr(cll))

Note that the conditional entropy measure does not
assume that the model has correctly determineduhgber

classesC. RatherK, the number of classes induced, may

iffer from C, the number of pre-labeled classes (Cover and
Thomas, 1990). The binary casedsK=2,R = P = {+, -}
or {1, 2}. This gives us a direct information-thetic
measure of the goodness of the classification, lwhiay be
regarded as a measure of parsimony — it is a meaduhe
expected number of bits of information requirechddition
to the predictive model in order to correctly idgn& case.

These measures of accuracy thus correspond to the
(weighted) arithmetic mean of recall or precisighge
harmonic F-factor corresponds to the (weightedharétic

Rand Index (Rand, 1971) and may also be extended idean of case and prediction error rate, and theng&x

providing an accuracy figure for unsupervised drtisg
even when the number of clusters determined bygystem
does not match the evaluation model. It gives equedht
to correct identification of both cases and appliesany
classification of classes.

A closely related measure of accuracy is the Jdcoar
Tanimoto Index [+P+R| / (N — |-P—R|) which treatsifive

and negative data asymmetrically and is designed f
ist no

occurrence statistics in  which non-occurrence
regarded as being of interest.

The standard average of recall and precision (Man&i
Schutze, 1999) is a harmonic mean which in its rgeseral
forms provide a weight = ? to determine the bias towards
recall, r, or precisionp, but is more commonly used with
o = 0.5 (which we will assume henceforth in this gam
weightingr andp):

F =pr/(ap+ (1a)r)
=1/@/r+(1-0)/p)
=2p-r/(p+r) (a =0.5)

This so-called F-factor is usually viewed as provida
bias towards the lower of the precision and reddlese are
relative frequencies and it is effectively takifge tmean of
their reciprocal intervals (‘wavelengths') as digtimeasures
of error rate (per +-case and per +-decision). &hsrno
clear justification for the use of another than 0.5. Rather it
seems to be used as a bias to reflect the redtitegdsmost
models have lower recall than precision whilst@te model

gives them equal weight.
The complements of recall and precisigmyerse recall

mean corresponds to the (weighted) arithmetic noéathe
case and prediction conditioned information.

The correct use of any of these averages to givevarall
accuracy figure requires weighting them by the elgub
number of instances or predictions per label.

Label Bias

%art of the problem with recall and precision istthit

encourages model developers to bias their modeds. F
example in part-of-speech (POS) tagging it is comrtm
ignore the possibility that nouns without a distimerb form
(invention<—invent, speak—>speaker/speech) mayskd as
verbs (Entwisle and Powers, 1998).

Many systems are poor at determining POS from
syntactic cues alone and rely heavily on a leximospecify
that (say) ‘water' and 'shoulder' are nouns. litier rate in
determining the POS of a word is higher than theugence
rate of a verbal usage of a noun, they can actirthease
their accuracy by specifying that the word is alsaynoun.
The occasional sentence where | 'water the garden’
'shoulder someone aside' will have less impact loa t
accuracy figures than the impact of incorrectly elaiy
some of the nouns as verbs.

This problem is an instance of a more general |abd
problem (Lafferty, McCallum and Pereira, 2002) whic
actually leads to a bias against cognitively, listaally,
and physiologically plausible models as illustraabdve.

In an ideal model the distribution of prediction®|:|-P|
will reflect the a priori distribution of the data, |+R|:|-R].
Thus the marginal probabilities for the label

(specificity)andinverse precisionmay be used to assess thel O P, ps(l), and those for the corresponding actual class

accuracy in predicting non-occurence, and an imvens
negative F-factor may be derived using the cornedimy
formula.

average error rates to produce a single accurgayefi

The positive and negative F-factors may
furthermore be combined analogously in terms ofirthe

¢ OR, pr(c), should be the same:
pe(1) = [+P/N = R(1) = |[+R|/N,
Pe(2) = [-PIIN = R(2)=|-RI/N.
If we consider the problem of correctly identifyiaghoun

An alternate method of combining recall, precision,and know that 9% of the usages are nouns and/lére
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verbs, but we always say 'noun’, then we get thewitng
contingency matrix:

+R -R
+P 90 10 100
-P 0 0 0
90 10 100

Note that with this trivial model the recall is 26Q90/90
nouns are identified correctly) and precision isedmined
by the prior probability of a noun as %0(90/100 cases
identified as nouns are correct).

An appropriately parameterized learning model
artificial neural network (ANN) should automatigatend to
produce label predictions that mimic
distribution of classes. However many hand-crafted

we express them in reduced form in our spreadsheets

While we have used a gambling rationale here,
speculative investing fits exactly the same model @ basic
principal of portfolio theory is to diversify in asrdance
with the perception of risk, with risk being usedetstimate
returns in technical analysis (as opposed to furedaah
analysis based on external factors). On the obfzerd,
failing to directly penalize errors — as with pigon, recall,
F-factor and conditional entropy — leads to arl#rassues
(in financial markets) or the possibility of a “[@ht book”
(in gambling), violating the principal of rationethoice.

This means that it is possible to adopt a stratibgy

orguarantees winning some amount even in the absdrarey

“edge” or theory of the causal or historical fastorvolved.

the observed As we illustrated with our POS example, this is thek

that enables speech recognizers and parsers toe quot

hand-tuned models or systems take advantages of thmrealistic error rates, recall and precision yoifi are trying
weaknesses of recall and precision to achieve rbetteo decide between two spellings or two part of sheags

“accuracy” by cheating as above.

In a supervised feedforward neural network (peroept
backpropagation, etc.) the attribution of errorinputs in
proportion to their influence, as given by thejpuh weights,
leads to stabilization at weights that give riseato output
distribution that matches the input distributiorespective
of whether there are learnable/learned pattermsobin the
input. The same is true of unsupervised, self-dejyag and
associative networks based on Hebbian plasticity.

Sometimes a training set will be overtly “standaedi” to
avoid bias by the proportions of the different niag
examples either by equalizing the number of + arwhses
or by discounting their weight. For example, if nda—
occur with a 7:3 skew, + and — may be trained ttpuwiu
values of 1/7 and 1/3 respectively rather thamil, reegative
cases where + or — doesn't occur to output vadfiesl/3
and —1/7 respectively rather than -1.

However, generally a learning system should aim
match the input distribution, and in a competitlearning
system or ANN the thresholds can usually be adjuste
achieve such a match. A system that doesn't havatehing
distribution cannot hope to achieve ¥@ccuracy across
all conditions, but will have non-zero cross-caatins.

Bookmaker Odds

We now motivate an alternative accuracy measurggusi
betting scenario that contrasts with this recall anecision
analysis by providing a penalty for errors basedan (or
rational) odds determined from the historical piuliy of
each “horse” winning. This specifies what you winyou
win as well as what you lose if you lose — in aor@iverse
to the ratio of probabilities. So an offer of odufsX:Y (or
X/Y) for a horse means that if you (your horse) svijou
win X, while if you lose you lose Y, and with faidds this
would indicate that the probability of winning i(X+Y)
and the probability of losing is X/(X+Y) and thepected
gain is XY/(X+Y) — YX/(X+Y) = 0.

In empirical cognitive science, however, we do ot
general know the costs of errors nor can we exiiech to
exactly follow the underlying probability distribahs. For
convenience we assume here that the odds are isgecif
percent rather than the usual reduced integer faltmough
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for a word, and always choose the more common yme,
will get a higher precision than mere guessing.. fix>Y
and you choose X you will win X-Y>0 percent of tiirae.

We show in this paper that our Bookmaker evaluation
technique assesses guessing (random choice) ag gisi0
gain, perfectly correct performance as giving uimam
gain and perfectly incorrect performance as giviag
maximum loss. Moreover making a perfect correctisiec
G% of the time and guessing otherwise gain&os of our
maximum gain. Conversely making a perfectly ineotr
decisionG% of the time and guessing otherwise loses us
G% of our maximum loss. Moreover this generalizesnfro
the binary case to the€ choice case where there are actually
K-1 wrong labels for any case — noting that in tidse the
maximum loss will in general be less than the maxim
gain as the penalty is different according to melgi which
incorrect choice is chosen. Also we can recoveepetdent

tagyain/guess factor§(l) = B(I) for each decision labél

Bookmaker thus provides us with a measure of
informedness- what percentage of the time we are making
an informed decision versus guessing. It also tedlsvhen
we use information to choose incorrectly: traintognoise,
superstitious learning or overtraining decred&(és

The Bookmaker measure has been implemented in Excel
for the binary and ternary cases, and a generaloreffor
any number of cases has been implemented in Mattab
has been used to evaluate research results inmafmm
retrieval, EEG, vision processing and speech psicgs
experiments. (Electronic form of Fig.1 is activeegisheet.
Matlab/Octave code is available from author on estj)

Analysisof the Binary Case

The paradigmatic use of odds is in horse racingrevie
Bookmaker offers you odds like 2:1 or 1:2 on a ipaltar
horse in a race that will in general have more thaa
horses. When she offers you odds of 2:1 (2/1) iamseshe
thinks your horse is at least twice as likely ted@s to win,
and so you will receive twice your bet plus yourgoral
stake if it wins. Odds of 1:2 (1/2, or 2:1 againsgans that
she thinks the odds are 2:1 against her and thatharse is
twice as likely to win as lose so you will receilvalf your
bet plus your original stake if it wins.
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For the binary case we assume there are just twgeso
the probability of horse 1 winning (R+) W% — so the odds
we expect ardé:W whereL% = 100% —W% On the track
this would be reduced to a similar but smaller orati
involving smaller integers. We will also assume ixed

Since our bookmaker odds are defined so as to e ze
sum, guessing gives no advantage to either partytia@
expected (long term average) gain is $0. The ergect
winnings on horse 1 isW - $1MW and the expected loss is
-L - $1L (when we bet on 1 but 2 wins) which sum to $0

reduction factok. If the odds are fair and we are guessing Thus the percentage of bets we win is reflecteelctly in

our expected gain/loss for guessing is $0.

We initially assume that we will always bet%n horse 1
if our system predicts +P, a win for horse 1 —aedwin &
if we are right. Otherwise (—P) we will beL $n horse 2 as
the system predicts horse 2 will win and horse [Llese —
and win 3V if we are right.

This means we have a payoff df # we correctly bet on
horse 1 and otherwise we lose our stakeVdf £onversely,

the dollars we win and also directly reflects thhepgmrtion
of the time,G%, that we are betting in accordance with a
perfect play model.

In model three the expected payoff for each decisie
make is the same for each horse and reflects okingpan
informed correct decisio®% of the time in each case, with
each row of the payoff matrix showing the same iprof
margin ofG(l) = B, the average across all decisions. In the

we win $V if we correctly bet on horse 2 and otherwise losebinary case, our formula simplifies B= recall — fallout=

our stake of k. In terms of our contingency table for the
decision as to whether horse 1 will win or not, ese the

tpr — fpr= G(0) = invrecall — invfallout= tnr — fnr= G(1).
The fourth model used in Figure 1 makesiacorrect

following payoffs and each event has the same amounlecision (labels reversed}% of the time, showing a loss

riding in the pool (we have anted up &nd the bookie W
or vice versa, which add absolutely to $100):

+R -R
+P Nl (W) 100
—P @) W 100

Our net actual winnings or losses will reflect the
percentage of the time we are usdginitiveinformation to
choose theorrecthorse (row) rather than just guessing:

B = Yioe Pe(1) 2 cor Per(l,0) W(cl),
where w(c|l) = +(1-pr(c)/k (c=1),
= —(1- r(c)) /k (c#l).

If negative this indicates the extent to which we asing
available information to make a@ncorrect decision, rather
than guessing. We will sétso that the expected payoff is
$1 for correct bets, a loss of $1 for incorrectsbaind an
expected $0 overall for guessing as we will vebiéow.

Givenk = pr(c)-(1- m(c)) we find we|l) = +1 / ik(c) and
we can see that we bet £1tb win $1W for horse 1, and
$1W to win $1L for horse 2, consistent with their
respective odds df:W andW:L. Since the probability of a
win for horse 1 isW, expected winnings and/ - $1W =1
for model one (perfect play) and similarly for herg we
expectL - $1L = 1 when betting correctly with model one.
Thus the model is set up so that with perfect glagpdel
one) we stand to win $1 on a given horse on average

This is illustrated in Figure 1 (but odds are shawra
reduced form that add to 10 rather than as pergestthat
add to 100) and follows directly from the lineariby the
payoff formula. Figure 1 shows four distinct degisi

B = -H% (due to the symmetry of the binary case).

Note the similarity between the Bookmaker payoff
formula and the conditional entropy formula thatesis
information as its currency, with a|() = log(1/g(c))/pe(l).
This weighting is however uniformly non-negative, does
not exhibit analogous properties.

Analysis of the General Case

The extension of the bookmaker evaluation formalanore
than two choicesC=K>2, is complicated by the fact that
there are multiple wrong choices, but accordingthie
bookmaker-odds metaphor, the penalty for losing
independent of which other horse wins.

The generalized Bookmaker payoff formula is thus:

is

B = X e Pe(l) X cor Per(l,C) W(cll),
where wEl) = +1/ () (c=1),
= -1/@1-pM) (c#l).

Note that this defines the same weighting for aatyin
decision as the previous formula, and in genepbéit B0
continues to estimat&%, the percentage informed correct
decision. This is because the penalty for makineaorrect
decision is applied irrespective of which incorrdetision
is made and fair bookmaker odds reflecting theritistion
probabilities are designed to be zero sum — thdb isay
there is no advantage to either party from guessing
strategy. Any consistent ga% is thus due to an edge —
making good use of available informatidgmformedness

In the binary case was independent of the predicted
label | so thatG(l) = Y = per(l,€) W(c|l) was constant

models. The first chooses randomly, the second siakdndependent of the chosen label. This is not necigs

perfect decisions, the third follows model &% of the
time (perfect play) and model one the rest of timet
(random guess). The total percentage of casexinasl in
the decision matrix is the sum of k&% of the decisions
that follow model two and the 10G% of the decisions that
follow model one. Due to the linearity of the padyof
calculation the same applies to the payoff masixthatB =
G% — given guessing has an expected payoff of $0swvhil
the perfect model has an expected payoff of $&rssired
by settingk appropriately.
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going to be the case for C>2 as it may be that stamses
are noise-affected or more confusable than othersve
derive less information and depend more on chamce i
allocating these labels. We illustrate this later.

In the same way, a lo€®<0 no longer directly estimates
H%, the percentage informed incorrect decision. Hhnises
because we must make a further (random) choicerdiit
from the correct choice as determined by the infmm
model, and each of these possibilities has a Id¢iuatr non-
zero) probability and so a different penalty foriaoorrect
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Probability Distribution
30% Predicted

ool

Decision
Probability
F(0.5) IF(0.5)
F(0.5) 74.67%
IF(0.5) 24.00%
Model 1 Bookmaker Odds 0% AVF(0.5)
Weighted 7 Won G(0.5) 1G(0.5)
$0.00 G(0.5) 74.83%
1G(0.5) 24.49%
AvG(0.5)
100 N Probability Distribution
100% 70% 30% Predicted
Decision 70% 70
Probability 30% 30
Actual 100
F(0.5) IF(0.5)
F(0.5) 100.00%
IF(0.5) 100.00%
Model 2 Bookmaker Odds 100% AVF(0.5)
Weighted Won G(0.5) 1G(0.5)
$10.00 G(0.5) 100.00%
$10.00 1G(0.5) 100.00%
$10.00 $10.00 L $10.00 AvG(0.5)
100 N Probability Distribution
70% 30% Predicted
Decision 79%
Probability 22%
Actual
F(0.5) IF(0.5)
F(0.5) 78.25%
IF(0.5) 37.28%
Model 3 Bookmaker Odds 15% AVF(0.5)
Weighted Won G(0.5) 1G(0.5)
$1.50 G(0.5) 78.38%
1G(0.5) 37.80%
AvG(0.5)
100 N Probability Distribution
70% 30% Predicted
Decision 73%
Probability 28%
Actual
F(0.5) IF(0.5)
F(0.5) 66.81%
IF(0.5) 17.74%
Model 4 Bookmaker Odds -15% AVF(0.5)
Weighted 7 3  Won G(0.5) I1G(0.5)
-$1.50 G(0.5) 66.82%
-$0.41 . 1G(0.5) 17.76%

-$1.50 . . . AVG(0.5)

Input Areas are designated in inverse blue like this

AVF(0.5)

52.50%
AvG(0.5)

59.85%

AVF(0.5)

100.00%
AVG(0.5)

100.00%

AVF(0.5)

63.30%
AVG(0.5)

67.00%

AVF(0.5)

37.94%
AvG(0.5)

46.41%

Figure 1. Spreadsheet showing 0%, 16(1%% anc- 15% chance models comparing Bookmé

Profit with Precision, Recall, Rand Accuracy, Ftiéa@nd unweighted Geometric Me

(Within Word double click to use spreadsheet, righuk to import into Excel.)
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Table 1: All 500 occurrence t¢fain anddogin the Brown corpus, with sense tf and df counts.

A. 127:37dogas animal

B. 2:2 negativilog metaphor

C. 2:2 togog D. 1:1dodeg

E. 16:14dogmatogmatic F. 1:1dogdrot

G. 4:3 hotog H. 9:1dogas cam

I. 5:5dogged/followdoggedly | J. 2:dogin plant name

K. 11:8ogin place namg L. 1:dogin product name

M. 229:87train as teach | N. 75:42 railwasain

| 0. 8:4 wagorirain

| P. 5:1train of dress | Q. 2:1train as aim

choice. Their loss is maximized if they back thesin
probable incorrect horse, since the favorite has ldast
favorable odds and gives the most profit to thekingaker
when we lose, as we must.

Both positive and negative valuesBhave been seen in
supervised learning systems. However, the latteveis
rare, occurring only with very poor learning modétet
behave worse than chance.

In the case of unsupervised learning or classiticat a
negative value tells us the classes have not balesield
optimally. In the binary case this only affects thign,

G% = —-H%, whilst in the general case the classes should be
permuted to maximize the sum of the diagonal of the%

contingency matrix, or simply to maximizz2.

If the number of classes founl, does not equate with
the number expected, C, then combinations rathan th
permutations need to be explored.

Selection, Abstention and an Example Evaluation

In real life, it is important to know when to stayt of the
market or not to take a bet. Rather than guesstren you
don't have the information to make a good decisiblis
better to refrain from doing so. In a clusteringtext, often
the largest cluster will be a cluster which the ilade
attributes were simply not able to tease apart.this
situation it desirable to hawe>C and ignore such catch-all
classes.

words related to the primary meaningsdifg/N train/N,
and train/V (classes A, M and N) were used to provide
context to cluster these 501 occurences using AagsC
(Cheeseman and Stutz, 1995).

A classification into 18 classes was reduced t®2al2
contingency matrix with 170 cases after finding ebhi
induced class had the highest probability of prtiutic
which label, combining equally good classes, and
eliminating the catchall classes that did not predny label
best. Bookmaker, recall, precision, and means were
calculated for the 12 classes along with a weighisstage:

A|B|E|G|H|I|K|M|N|O|P| Z|wav
r 100 3] 33 7 13 10 33100100 8§ 13 20 34
p | 35100100 33 25100 25 33 24 25100100
B |100-24 32 -2| 5 4| 32100100 1] -2 18 86
F|52 5 50 11 17 18 29 50 39 13 22 33 18
G| 60 16| 58 15 18 32 29 58 49 14 35 45 31

Note that thé= andG class means lie betweerandr but
thatB is strongly influenced by. The averageB,a, shows
that where a classification is made it is an infedndecision
86% of the time. Since only 170 out of 500 case®4B
were classifiedB (andr) must be discounted by 34% so that
overall informedness is estimated at 0.86*0.34 %29

The negative values d(l) indicate where superstitious
labelings dominate and we are doiwgrsethan chance so

The Bookmaker may be used in this case too — simplghould discard the classes (and/or guess) to ineBoy.

apply as usual to the cases but assign zero wéigkt or
penalty) to cases classified in an ignored claierdatively
ignored classes and labels that are only preseart ignored

References
Cheeseman, P. and Stutz, J. (1996). Bayesian ftasisin

class may be omitted and the Bookmaker calculation (AutoClass): Theory and Results. In U. M. Fayyad, G

executed on a contingency matrix of the remaimraases,

Piatetsky-Shapiro, P. Smyth., and Uthurusamy, RIS{E

matching the best class for each retained labele Th Advances in Knowledge Discovery and Data Mining

probabilities found will then all be conditioned dhe
criterion for inclusion, but the true recallr)( and
informednessK) may be found by multiplying them byN
whereN is the original number of cases

Like the cheat of assuming the most likely answieis
acknowledges that there are some things we areod @it.
But Bookmaker won't be influenced by that form of
guessing or any other. Rather, each prediatibas a value
G(c) that indicates how informed the decision is, wathil
1-G(c) indicates how much pure guesswork is involved.

Table 1 shows 17 sense classes for the wdaoisand
train, possibly followed by other letters. Exactly 500cks

Cambridge, MA: MIT Press/AAAI Press.

Cover and Thomas, (199@lements of Information Theory.
New York, NY: John Wiley & Sons.

Entwisle, J., & Powers, D. M. W. (1998). The Prdddee
of Statistics in the Evaluation of NLP Parsers,
Proceedings of thBleMLaP3/CoNLL98 Joint Conference
(pp- 215-224), Somerset, NJ: ACL.

Lafferty, J., McCallum, A. & Pereira, F. (2001). @ttional
Random Fields: Probabilistic Models for Segmenting|
Labeling Sequence DataProceedings of the 18th
International Conference on Machine Learnifg@82-
289), San Francisco, CA: Morgan Kaufmann.

occurences were found in the 500 2000 word documerMlanning, C. D., & Schutze, H. (1999Foundations of

extracts that constitute the Brown corpus. An aoloitl
index document (501) and class (Z) were addeckefdhrical
reasons — this corresponds to the introductionnofnalex

statistical natural language processin@ambridge, MA:
MIT Press.
Rand, W. M. (1971). Objective criteria for the exation of

context (many documents returned by multiword web clustering methodsJournal of the American Statistical

searches tend to have the form of a dictionaryndex). 21

International Conference on Cognitive Science, 131y 2003, Sydney Australia (revised Februaryg)00

Association, 66846-850.

534



