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Abstract

Automatic programming, that is, machine synthesis
of algorithms, has advanced to the stage where most
simple standard algorithms, for example for search-
ing, sorting and combinatorics, can be routinely
synthesized. In this paper, we study a much more
difficult problem, namely automatic programming
for learning the semantics of human language. As
far as we know, the most advanced and capable sys-
tem for fully automatic programming is Automatic
Design of Algorithms through Evolution (ADATE),
which has a unique ability to generate recursive
functional programs from first principles with au-
tomatic invention of recursive help functions. The
semantics of the simple human language learnt by
ADATE in our experiments is grounded in a desk-
top world where an agent moves a cursor on a sur-
face covered with a number of windows, similar to
the desktop facing millions of computer users every
day.

Introduction

When designing machine learning methods, it is de-
sirable to have progressions of more and more dif-
ficult test problems that can be extended to the
difficulty and variability of problems encountered
by ourselves. Such progressions of machine learn-
ing problems can be obtained using a simulation of
agents that communicate in increasingly larger sub-
sets of human language. We discuss how to define
problem progressions and present experimental re-
sults for the first few problems in a progression con-
cerning manipulation of a Windows desktop.

In order to make computers learn a primitive hu-
man language and manipulate a desktop, we use
Automatic Design of Algorithms through Evolution
(ADATE) (Olsson, 1995) that generates purely func-
tional programs.

We provide evidence supporting the hypothesis
that comparatively simple evolution with great, but
still feasible, time complexity can produce complex
algorithms reflecting language and simulated worlds
of increasing complexity.

Much of computer science is devoted to reduc-
ing the ratio between the complexity of computer
languages and their expressiveness. In particular,
purely functional programming languages, for exam-

ple Hagkell (Peyton-Jones, 2003) and Clean (Plas-
meijer & Eekelen, 1993) were designed to reduce the
complexity of programs and are ideally suited for
complex symbolic processing of syntax and seman-
tics for human language.

It is no coincidence that purely functional lan-
guages also are ideal for automatic evolution of al-
gorithms, for example by facilitating program trans-
formations. In this paper, we employ ADATE to
evolve purely functional programs that represent the
semantics of human language.

ADATE has previously generated a range of rela-
tively small recursive programs in problem domains
such as sorting, searching and combinatorics. It is
a general system for automatic functional program-
ming with the ability to evolve recursive programs
from first principles and automatically invent recur-
sive help functions. The main drawback, shared with
all methods for program evolution, is a huge compu-
tational demand.

The primary restriction of our approach is this
computational complexity rather than the ability to
define progressions of problems, even if this is non-
trivial and a research topic on its own. We provide
experimental results as well as a theoretical discus-
sion for the time complexity of ADATE.

Progressions of learning problems

The problems and challenges posed by nature are
open-ended in the respect that no known life form
has perfect or nearly optimal solutions to all of them.

We seek a progression of well-defined machine
learning problems that similarly is open-ended in the
respect that no machine learning method can be ex-
pected to solve all of them. Being open-ended also
means that if a machine learning method succeeds
in solving all problems in the currently defined pre-
fix of the progression, it should be straightforward
to extend the prefix until the method fails.

The progression should also be smooth which
means that minute fitness differences between indi-
viduals can be identified. Another desirable prop-
erty is that the start of the progression consists of
quite simple problems that can be solved by individ-
uals with almost no cognitive ability at all.



Yet another desired property is that the problems
should be well defined, facilitating analysis of their
machine learnt solutions. For example, the problems
in nature as well as in artificial life simulations are
implicitly defined by the world and not well defined.

Thus a problem progression should have four
properties to be suitable for driving artificial evolu-
tion namely simple start, open end, smoothness and
analyzability. Natural language learning problems
seem ideal with respect to these four criteria.

There are several dimensions along which to study
the evolution of individuals with linguistic ability,
for instance the following two.

1. Evolution of a language faculty for a fixed and
genetically determined language versus evolution
of a language acquisition device (LAD) (Kirby,
2002).

2. Evolution to learn a specific human language, for
example English, versus evolution studying emer-
gence of language (Steels, 1997).

We argue that evolution of functional programs is
suitable for all points in this two-dimensional space.
However, this paper focuses on direct evolution of
a simple human language for the following two rea-
sons.

1. Evolution of a LAD may be more computationally
demanding and irregular, making it less useful for
easily studying the complexity and scalability of
evolution. Note that evolution of a learning algo-
rithm, e.g. one similar to any of the main algo-
rithms in (Mitchell, 1997), appears to be a mini-
mum requirement.

2. Tt is easier to analyze the results of language learn-
ing without having to also deal with an emergent,
probably unknown, alien and incomprehensible
language. However, most experiments reported
in the literature are so simple that this alien lan-
guage problem is surmountable.

The analyzability alluded to above is yet another
reason for using functional programs, particularly
ones that are not too far from minimum size, instead
of neural networks, say, which are more like black
boxes.

The desktop learning scenario

The semantics of the simple language in our experi-
ments is grounded in a desktop world where an agent
moves a cursor on a surface covered with a number
of windows, similar to the desktop facing millions of
computer users every day. The agent is supposed
to respond, either by actions or words, to sentences
from a simple compositional language containing a
few verbs, prepositions and nouns as well as the
words “yes” and “no”

For example, assuming that A and B are windows,
the sentence “go inside A” should induce the agent
to move the cursor so that it is inside A whereas the
sentence “is above B” yields a “yes” or “no” reply
and no action. This model is both simplistic and
simple, in that it does not require the evolution of
cooperative behaviour (Steels, 1997) but employs a
direct fitness function.

The role of ADATE is to synthesize a function
f that controls the agent by analyzing a sentence
and producing either a next action or a reply. The
main loop of an agent, written in the environment
passing style of Clean, employs f together with a
simple desktop simulator function, nextWorld, as
shown in Figure 1. This function applies an action
to a world and returns the resulting new world.

The parameter Words is a sentence represented as
a list of words where each word consists of four bits.
Thus, the smallest syntactic unit is a bit and not a
word. World is a three tuple, ( Cursor, Windows,
Count ), where Cursor and Windows specify the
current state of the desktop and Count is the number
of actions that have been applied so far.

The value of Action returned by the synthesized
function f is right, up, left or down and causes the
corresponding movement of the cursor when fed to
nextWorld. In future experiments, we plan to add
actions grab and release enabling the agent to also
move windows.

As seen in Figure 1, £ may just return a list of
words Ws which causes termination of main and pro-
vides Ws and the current state of World as evidence
of the agent’s work.

In this paper, we experimentally study a short
progression of language learning problems made suc-
cessively more complex by including more words cho-
sen from the following small vocabulary.

Prepositions. inside, outside, above,
below, left0f, rightOf

Nouns. A, B, C, D, E, F
Verbs. go, is
Interjections. yes, no

The nouns are all windows and could of course
have been named “Internet Explorer”, “My Doc-
uments”, “Acrobat Reader” and so on to increase
the resemblance to a well known desktop that every
reader of this paper is likely to know about.

Experimental methods and results for

the desktop world

An ADATE specification of a learning problem con-
tains algebraic data types, training inputs, an eval-
uation function and a limit on the execution time
of a synthesized program. We will first discuss the
evaluation function and then our choice of training
inputs but omit formal definitions of the types.



fun main( Words, World ) =
case f( Words, World ) of
finished Ws => result( Ws, World )

| some Action => main( Words, nextWorld( Action, World ) )

Figure 1: The main loop of an agent.

The evaluation function

Since there typically are many action sequences that
achieve a given goal, it is in general inappropriate
to use input-output pairs as training data for an
agent manipulating a world. However, the desktop
learning problem described above is so simple that
it would be possible to solve it with input-output
pairs. This would greatly simplify the learning but
also jeopardize the open end property of the problem
progression since we expect that it would be more
difficult to provide suitable explicit outputs instead
of an evaluation function for more complex agent
learning problems.

With our evaluation function the learner obtains
feedback only after having completed an entire ac-
tion sequence and replied in words. This is a form of
so-called reinforcement learning which in general is
both more widely applicable and more difficult than
learning from explicit input-output pairs.

The evaluation function uses a predicate to check
that a desired world state is obtained after simulat-
ing the agent for a maximum of 2000 time steps.
Additionally, the evaluation function considers the
number of moves made by the agent and the Ham-
ming distance between the reply in Ws and a desired
reply. Of course, both the number of moves and the
Hamming distance are to be minimized.

One may ask if this Hamming distance resem-
bles the feedback received by children when they
learn language. Whilst “Poverty of the Stimulus”
claims that children do not receive enough correc-
tion to explain learning and do not change their
language model as a result of what they do get,
this misses a number of important points. Children
get implicit feedback as to whether their sentence
was successful or not, whether they got what they
asked for or something else, whether they were un-
derstood or misunderstood. Moreover there is a well
known strategy of sentence repair whereby a par-
ent/teacher reflects back what they understood in
the correct form. Furthermore there is evidence of
anticipated correction where the learner has a model
based on sentences heard that is sufficient to realize
that an utterance doesn’t sound right and provides
constraints that direct learning. For further discus-
sion on this point see Powers and Turk (1989).

If the verb in a training input is go, the agent
is not allowed to speak which means that the de-
sired reply is the empty list nil. The verb is gives
a desired reply that is a list containing the binary

representation of either “yes” or “no”.

In light of the discussion above regarding the lack-
ing generality of explicit outputs, it is not entirely
satisfying to explicitly specify these three reply alter-
natives. However, the final world state is certainly
not explicitly specified. This shows up in the experi-
ments where, for example, some of the intermediary
programs always move the cursor to a corner of A
in response to “go inside A”. The best programs,
on the other hand, choose the shortest path to the
inside.

The training inputs

We employ randomly generated combinations of ini-
tial worlds and sentences as training inputs. The to-
tal evaluation i.e., fitness, for a program synthesized
by ADATE is computed by running the evaluation
function discussed above for all training inputs and
adding the resulting values.

We will now describe the probability distribution
that is employed to generate training inputs. First
of all, we choose a three word sentence of the form

<Verb> <Preposition> <Noun>

Each word is chosen uniformly at random from
the alternatives listed in the vocabulary above.

The next step is to choose the windows. The lower
left corner of a window is chosen uniformly at ran-
dom on a desktop with a size of 100 times 100 pix-
els. The maximum width and height of the window
is chosen uniformly on 1, 2, 3, 4, 5. The width and
the height are then chosen uniformly on the interval
from one to this maximum.

The coordinates for the one pixel cursor are chosen
relative to the window denoted by the noun. With
a probability of 1/3 the coordinates are chosen uni-
formly among the pixels in the window. With a
probability of 2/3 the coordinates are chosen uni-
formly on a three pixel wide zone immediately out-
side the window.

The ADATE specification file discussed above as
well as the source code for ADATE itself are avail-
able from Roland Olsson upon request.

Resulting synthesized programs

Given specifications as described above, ADATE
synthesizes compact and correct functional pro-
grams with a length of about 100 lines.

Initiallyy, ADATE’s population only contains the
program shown in Figure 2. This program always



fun f( Words, World as world( Cursor as pixel( X, Y ), Windows, Count ) ) =

raise D1

Figure 2: The initial program.

raises the exception D1 which indicates that it does
not know what output to produce.

After transforming this initial program a few hun-
dred times under the guidance of the evaluation
function described above, ADATE produces pro-
grams like the one partially shown in Figure 3, where
the two occurrences of . .. together represent about
80 lines of code that have been omitted to save space.
This program is written in a small and purely func-
tional subset of Standard ML.

The parameter Windows is an array of windows
accessed by a subscripting operation not shown in
Figure 3. This array cannot be updated by a synthe-
sized program. The constructor world is not avail-
able to a program, implying that a new world can
only be constructed by emitting an action. Lists of
words are constructed using nil and cons that occur
in the pattern matching case-expressions in Figure 3.
Each element in such a list is a four bit word that is
analyzed by the program using case-expressions like
case Vc48b3d of.

It is interesting to see that the program in Fig-
ure 3 is recursive even if the function f can be de-
fined without recursion. The recursion is a way for
the program to talk to itself and ask questions like
“How would I respond if someone said the follow-
ing?”. It could be possible for programs to develop
their own internal language for recursive feedback,
which would hinder analysis of the programs.

Time complexity analysis and
experiments

Long run time is the greatest weakness of ADATE,
but it is still far ahead of exhaustive search and
many other evolutionary algorithms. In this sec-
tion, we will first describe the factors contributing
to overall run time and then check how this analysis
agrees with simple experiments somewhat analogous
to desktop language learning. To analyze the time
complexity, we need to consider ADATE’s popula-
tion structure and overall search. Keep in mind that
neither can be exactly described in the small space
available here.

ADATE’s population consists of a back-bone of
base programs in a size-fitness ordering such that a
program in the back-bone always is better than all
seen smaller programs. Thus a back-bone of pro-
grams P;,P,, ..., P, is such that each P; is a little
better and a little bigger than P;_;.

Roughly speaking, each base program corresponds
to a species in nature. We will use the term neigh-
bourhood instead of species to indicate the set of

all individuals produced from and related to a base,
most of which have almost the same fitness as the
base.

For the simple analysis provided here, we assume
that the run time of ADATE is proportional to the
product of the number of training inputs, the max
run time per input, the max neighbourhood cardi-
nality and the total number of neighbourhoods.

In ADATE, the number of fitness values that oc-
cur is roughly equal to the number of base programs.
After a fitness value has first occurred, it can only
move downwards along the back-bone. Since the
minimum size difference is about unity, say, the num-
ber of moves is limited by the maximum size of the
first program with the fitness value. In a typical
ADATE run, the maximum size of any produced
program is of the same order as the number of bases.
Thus it is reasonable to assume that the number of
neighbourhoods that occur for a given fitness value
is bounded by the number of bases and that the to-
tal number of neighbourhoods is proportional to the
square of max program size.

The critical factor in this analysis is max neigh-
bourhood cardinality. Let a site be a node in a pro-
gram’s syntax tree. ADATE will try program trans-
formations at each site and iteratively deepen their
complexity. For example, when synthesizing a per-
mutation generation program, ADATE needs about
one million transformations for a site in the worst
case whereas only a few thousand are needed for the
program in Figure 3 even though this program is a
magnitude of order bigger.

Our conjecture is that the transformation com-
plexity per site is bounded by a constant no matter
how big and complex programs that are produced
provided that the specification is written to facili-
tate evolution.

In the worst case, a program may be improved
at only one site whereas a more favourable case is
that the number of sites that can be immediately
improved is proportional to program size. Thus we
assume that max neighbourhood cardinality is pro-
portional to program size in the worst case.

The conclusion is that overall run time in the
worst case should be proportional to the product
of the number of training inputs, the max run time
per input and the cube of max program size.

Let us now check this experimentally. To obtain
sufficiently many run time measurements with rea-
sonable consumption of CPU cycles, we employed
a highly simplified version of the desktop language
learning problem where the objective is to learn a
random mapping from binary words to constants.



fun f( Words, World as world( Cursor as pixel( X, Y ), Windows, Count ) ) =

case Words of
nil => (raise NA_474faf8)

| cons( V172e44 as word( V172e45, V172e46, V172e47, V172e48 ), V172e49 )

case V172e49 of
nil => finished( Words )

| cons( Vc48b3c as word( Vc48b3d, Vc48b3e, Vc48b3f, Vc48b40 ), Vci48b4l )

f( case ( V6206a7f < X ) of
false => (
case Vc48b3d of
0 => V63436c2
| 1= ...,
World )

1l
A\

1l
A\

Figure 3: Fragments of a correct program.

Execution time T versus number of words n . .

. . . .
13 1.35 1.4 1.45 15 1.55 16
log,y N

Figure 4: Least squares fit for execution time.

Note that this is a sub-problem of the desktop prob-
lem above corresponding to learning the mapping
from the binary representations of nouns to indices
in the array of windows.

We chose a word length of eight bits and fifty con-
stants for this decoding problem and ran it a number
of times for each number of words n in 18, 20, 22, . . .,
42. The training data for each run was simply the n
input-output pairs that a random mapping consists
of. Even if it is trivially easy to write a specialized
machine learning algorithm for this decoding prob-
lem, it is still meaningful to use it for basic testing
of the time complexity of a general machine learning
system like ADATE.

The programs synthesized for n > 40 have about
the same size as the program in Figure 3 but a rather
trivial logical structure. The experiments were car-
ried out on four 1.1 GHz Athlon PCs and took a total
run time of a few months. The base 10 logarithm of
the run times for the decode experiments are plot-

ted against the base 10 logarithm of n in Figure 4.
Assume that the run time 7'(n) = cn® for some con-
stants ¢ and k. Since log7T(n) = klogn+loge, the
gradient of the straight line in the figure is an ap-
proximation of k.

This straight line was fitted to the data using least
squares with bisquare weights in Matlab’s curve fit-
ting toolbox. Least squares assumes a normal distri-
bution with the same variance for each n. Obviously,
this is not true for most run time estimation such as
the one attempted here since the variance increases
with n. The bisquare weights are a primitive at-
tempt to compensate for the non-constant variance.
Since we obtained quite similar fits also with other
least square methods, the straight line in Figure 4
is unlikely to grossly misrepresent the real expected
run time as a function of n.

Matlab reports that k is 3.9 with 95% confidence
bounds of 3.3 and 4.5. Above, we said that worst
case run time should be proportional to the prod-
uct of the number of training inputs, the max run
time per input and the cube of max program size. In
the decode experiments, the program size is propor-
tional to n, that is, the number of training inputs.
Since the max run time per input is constant, this
gives a worst case run time of o(n?) whereas our
measurement above is o(n®?). It is not yet clear
why the measured time is so close to the worst case,
but the agreement between theory and this simple
experiment is nevertheless good.

An interesting question is how the run time for the
desktop learning problem depends on the number of
nouns and the number of prepositions. The desktop
experiments were run with 800 training inputs on a
cluster of sixteen 800 MHz Pentium III machines.
Run times varied between one and several weeks on
this cluster when the number of prepositions plus
the number of nouns varied between four and twelve.
Since the number of inputs were about twenty times



as many as for the biggest decode runs, we would
expect run time to be about twenty times longer
given that max program size and max run time per
input are about the same

The biggest decode runs consumed a single-CPU
time of slightly more than one week. Once again,
agreement between theory and experiments is rea-
sonable since this would lead us to expect about two
weeks on the cluster for the desktop runs.

Conclusions

We have examined the use of a functional formal-
ism for representing, learning and evolving language
using the ADATE automatic programming system,
and have benchmarked and analyzed its performance
in two sets of experiments. One set aimed to assess
its applicability to language learning and learned se-
mantic relationships in the context of a single syn-
tactic frame and an elementary simulated desktop
environment; the second aimed to confirm our anal-
ysis of the efficiency of the approach and involved
learning a random association of symbols and mean-
ings. Whereas exhaustive blind search would have to
sift through n™ or n! possible combinations of asso-
ciations (with and without replacement resp.), both
our theoretical and empirical analyses demonstrate
a worst case o(n*) performance for ADATE on this
task with its n inputs and o(n) expected program
size, and an effective limitation of the number of
“neighbourhoods” or “species” considered to o(n?).

In the desktop semantics experiments, program
size and runtime/input were held roughly constant,
demonstrating pleasing efficiency with theoretical
and empirically verified runtimes of o(n) for n in-
puts. The efficacy of the system was exemplary,
synthesizing correct programs of around 100 lines for
each example. These programs are quite compact,
however the formalism does not lend itself to ease
of readability. Interestingly, programs tended to be
recursive even though recursion was not required for
a correct solution. The recursion seems to have a
meta-level role in allowing the program to consider
potential actions or responses before making a final
judgement. This behaviour is reminiscent of theories
of anticipated correction in which a language learner
contemplates or even makes an utterance, but then
realizes that it doesn’t “sound right” and repairs the
sentence. See Powers and Turk (1989) for a detailed
discussion of explicit and anticipated correction as
an alternative to Chomskian nativist doctrine that
language is evolved rather than learned. In short,
there is no need to assume an innate language acqui-
sition device uniquely specialized for language but
capable of learning arbitrary human languages; nor
is there a need to assume a language-like interlin-
gua as a common representation across speakers of
different languages.

In formulating these experiments the decision was
made not to seek to evolve a language acquisition

device (LAD) but rather the aim was to evolve a lan-
guage directly. For this reason the performance of
this evolutionary approach is reminiscent of machine
learning approaches more than evolutionary model-
ing, though we note that evolutionary learning is a
special case of machine learning and differs primar-
ily in the nature and use of the evaluation or fitness
function. The difference between learning and evo-
lution is apparent in that although the evaluation
function assumes quantifiable feedback it does not
explicitly deny “poverty of the stimulus” and this is
reflected in the fitness of the individual rather than
in explicit correction. There is in particular no ex-
plicit pressure to evolve a program that incorporates
a correction model, an interlingua or a language ac-
quisition device, which makes it especially interest-
ing that a recursive model is developed that hints at
the emergence of an interlingua or LAD.
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