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Abstract

Artificial neural networks and other connectionist models of
computation are frequently credited with biological
plausibility. Since biological systems are products of
Darwinian evolution, network optimisation by artificial
evolutions has considerable appeal. However, the
computational expense of this can become prohibitive unless
an emphasis is placed on modularity and reuse. Gene
expression holds the answer to this. Genes are translated into
proteins that self-organize into phenotypic traits such as the
brain, with feedback loops controll ing the further expression
of genes. In this paper we present a generalization of this
mechanism, a context-free graph grammar that describes a
graph of finite-state automata. The graph is generated by
replacing hyperedges with subgraphs of automata and other
hyperedges according to a set of hypergraph productions.
These automata need not be homogeneous, e.g. they may
correspond to different types of neurons, reflecting the
diversity of neurons in the brain. Desirable hypergraph
productions are retrieved from a population of productions,
which evolve by mutation of existing productions and
subsequent selection against a user-defined criterion.

Introduction
Automata networks are networks of finite-state automata
that update their respective states according to the states of
their neighbours (Tchuente, 1988). Neural networks and
cellular automata are specific instances of this connectionist
model of computation and are distinguished by the types of
finite-state automata and interconnection graph chosen.
Unlike the serial architecture of modern computers, the
scalabili ty of automata networks is not reliant on a
continued shrinkage of circuitry. Automata networks adhere
to the same principle of distributed parallelism
characterizing the human brain, yet while the brain seems
slow and large compared to a computer, few would dispute
its exceptional capabiliti es. The evident viabili ty of this
principle, however, has not translated into widespread
implementation. Serial machines are easy to program – the
step by step transformation from problem to solution is
often intuitive. Conversely, handcrafting an automata
network for a specific application can be exceedingly
diff icult.

The popularity of neural networks over other automata
networks is principally due to the effective learning
algorithms that can be and have been devised for them.
Gradient search based techniques such as backpropagation
(Rumelhart, Hinton & Willi ams, 1986) are the most widely
employed of these, but necessitate finding a differentiable
objective function that corresponds to the problem at hand.
For weight learning in a multilayer perceptron with
continuous threshold functions this is a straightforward
exercise. For the majority of other learning problems,
however, it is not. Even with a perceptron, we therefore
encounter some limitations.

Weights are meant to model the synapses between
biological neurons. Weight learning hence reflects synaptic
change, which is a major source of functional change in the
brain – but not the only. Adult neurogenesis, i.e. the
perpetual incorporation of new neurons into neural
structures, has been long conjectured and shown in models
to play a crucial role in brain plasticity and learning (Cecchi
et al., 2002). The classic example is the seasonal death and
regrowth of neurons in canaries, which renew their yearly
repertoire of songs in this manner (Alvarez-Buylla, Ling &
Nottebohm 1992). Experimental evidence of adult
neurogenesis in the human brain has also been reported
(Eriksson et al. 1998).

Weight learning is not the only possible – or even
necessary – form of adaptation in the perceptron either. In
fact, the success of weight learning is often dependent on
the number and arrangement of automata and edges within
the network, which is not in any way adjusted by
backpropagation. A range of heuristic algorithms have been
suggested that attach or prune components of the network as
warranted (Alpaydim, 1994), but none can claim to have an
immediate biological equivalent.

Evolutionary Optimisation
Nervous systems are shaped not only by their environment
but also by genetic factors, which are the product of
evolution. Darwin’s theory of evolution explains the
adaptation of species by the principle of natural selection,
which favours those species that are fittest, i.e. most adapted
to their environment, and consequently most successful at
reproducing (Darwin, 1859). The notion of universal



Darwinism (Dawkins, 1983) asserts that the same
characteristics that make life susceptible to evolutionary
change can also be found in other systems. Plotkin (1993)
has proposed the g-t-r heuristic as the modus operandi of
evolution, comprising the three phases of generation,
testing, and regeneration.

Numerous evolutionary algorithms have been devised that
exploit this heuristic for the optimisation of functions.
Common to all of these is the notion of increasing the
overall fitness of a population of ‘ species’ , say, different
parameter choices, by replacing poor species with improved
ones (Bäck, 1996). A population of offspring is generated
from the existing population by means of applying mutation
and/or recombination to selected multi-sets of species (see
Figure 1). Those that are selected form a new population;
the cycle is repeated until a species is deemed sufficiently fit
as measured on some user-defined criterion. Evolutionary
algorithms have been successfully and extensively applied
towards the optimisation of automata networks, cellular
automata (Mitchell , Crutchfield, & Das, 1997) as well as
neural networks (Yao, 1999).

Figure 1: Evolutionary algorithms generate an offspring
population of candidates from an existing population; the
fittest candidates are subsequently selected as parents for
the next generation.

While an evolutionary algorithm will always converge
upon a globally optimal solution given sufficiently large
mutations, it may take a good deal longer than the user can
afford. The number of samples needed to estimate the space
of all possible solutions increases exponentially with the
number of parameters constituting each solution. This ‘curse
of dimensionali ty’ plagues most statistical learning
problems and is not easil y overcome. A noteworthy example
is the Golem Project (Lipson & Pollack, 2000), a distributed

computing project utili zing the processing units of over
30000 Internet users to evolve robots. Because of (or despite
of) the considerable resources being applied, it could be
shown that robots beyond a certain level of complexity were
impractical to evolve. As more components were added to
the robot, the parameter permutations grew so large that the
solution space became intractable.

Genes & Modules
Genetics has extended evolutionary theory by the concept of
heredity, with genes acting as transfer units. The genes of an
organism constitute its genotype, or genome, which is
encoded into several chromosomes of DNA. Natural
selection applies to the phenotype, which is an expression of
the genotype within a given environment. Genes composed
of DNA are transcribed into RNA, translated into
polypeptides, and then processed into proteins which self-
organize into phenotypic traits (Futuyma, 1998). Complex
feedback loops control the further expression of genes.

Genetic algorithms set themselves apart from other
evolutionary algorithms by acknowledging this genotype-
phenotype distinction. The intricacies of molecular genetics
are typicall y omitted, however, and a far simpler
interpretation function translates what usually amounts to a
binary string into a construct whose fitness can be assessed.
With the simplest approach, a direct encoding scheme, each
gene describes a specific detail of the phenotype, such as the
value of a particular weight in the network. According to the
building block hypothesis, gene sequences that confer
above-average fitness (so-called building blocks) become
increasingly dominant in subsequent generations and form
instances of larger sequences that confer even greater fitness
(Holland, 1992).

For a gene sequence to be reusable in different contexts,
modularity is implied. A system can be understood as
modular if it can be described in terms of parameters subsets
– modules – that are more tightly coupled internall y, i.e.
between parameters of a single subset, than externally, i.e.
between parameters of different subsets (Simon, 1996).
Since a subset that is statistically independent of its context
can be optimised on its own, a modular system becomes far
simpler to optimise on the whole.

But while modularity can account for much of the
effectiveness of genetic algorithms, most genetic algorithms
do littl e to facilit ate and exploit modularity. In a typical
genetic algorithm the proximity of genes is unrelated to any
dependencies between them, and crossover operators
indiscriminately create and destroy modules. Moreover, an
evolved solution with multiple instances of the same
module, i.e. a solution that exhibits regularity, cannot be
represented in a compact manner. This is specifically
relevant when representing large constructs such as the
human brain, which contains about 1011 neurons with an
average of 105 connections each, but has to be encoded in a
fraction of the 2x109 base pairs that constitute the human
genome. A direct encoding scheme is clearly unsuitable for
this.



Figure 2: Network construction according to cellular
encoding. The left half of this figure depicts a tree of graph
rewriting instructions (S = sequential division; P = parallel
division; R = recurrent link; E = end program); the right
half is the developing network. Dotted arrows point to the
instruction that applies to the cell at each step.

Algorithmic Encoding
The algorithmic complexity of a structure is the minimum
length of an algorithm that generates it (Li & Vitányi, 1993).
While algorithmic complexity is an incomputable measure
in itself, it highlights the advantage of algorithmically
describing a structure: Any regular structure can be coded
by a more compact algorithm. The human genome is
therefore best understood as an algorithm, not a blueprint.
Each of our cells contains a copy of our genome, which
governs our development. Cells vary in functionality
depending on the genes they express. Kennedy (1998)
simulated the evolution of cells in which such mechanisms
operate. Our goal is to determine an algorithmic description
for automata networks along these same lines.

Lindenmayer (1968) introduced L-systems in an attempt
to describe the development (ontogenesis) of linear and
branching structures in plants. L-systems are parallel string
rewriting systems that rewrite a starting string into a new
string by applying a set of production rules to all symbols of
the string in parallel. Kitano (1990) and Boers &
Sprinkhuizen-Kuyper (2001) employed L-systems to
describe neural networks, necessitating a translation of the

generated string into a network. Gruau (1994) proposed an
alternative approach, called cellular encoding, which
represents transformations to cells as nodes on a binary tree,
as shown in Figure 2. Different subtrees reflect the different
transformations applied to different cells following cell
division. Subtrees can be swapped with those of other
genomes, facilit ating reuse of ‘useful’ subnetworks,
analogous to the automatic reuse of functions in genetic
programming (Koza, 1994). The reuse of subnetworks
within the same network, however, requires definition of an
operator that references other parts of the tree. This
effectively adds cycles to a tree and raises a fundamental
question – why not begin with a graph in the first place?

Gene expression in biological organisms sees a gene
modulate the activity of itself and other genes. In a
quantized model of this, each gene can be interpreted as an
instruction that executes and then triggers other genes. The
genotype thus becomes a directed graph of instructions
(genes) that is continuously traversed to construct the
phenotype. Our proposal is to evolve such graphs to
construct automata networks. More formally, we intend for
a context-free graph rewriting system, where each gene
maps to a graph to be extended by other genes.

Method
Edges in a graph usuall y have arity two, that is, they connect
two vertices. A hyperedge connects several vertices, and a
graph with hyperedges is hence called a hypergraph.
Whereas in a graph the vertices are often regarded as objects
and edges as relationships between these objects, in a
hypergraph it is quite intuitive to reverse these roles. This
suits us well . We can define hyperedges as incomplete
segments of the graph that are connected by vertices. The
graph can grow by replacing labelled hyperedges with
subhypergraphs according to a set of hypergraph
productions (Habel, 1992). The choice of productions
constitutes the genome that defines the output of this
hyperedge replacement system.

A graph generated by the hyperedge replacement system
becomes an automata network by adding the appropriate
semantics to vertices and edges. Our decision to evolve
automata networks rather than neural networks, as other
systems have done, arises from the common misperception
of neural networks as networks of homogeneous threshold
units. Biological neurons typically belong to many
categories with greatly differing computational properties,
with some, e.g. starburst cells (Euler, Detwiler, & Denk,
2002), extending well beyond the classical threshold model.

Heterogeneous networks also offer advantages with
respect to implementation. Certain operations can be
accomplished far more speedily if done natively on a serial
computer, rather than as a simulation of a neural network.
For instance, the number of weights and hence training time
of a multil ayer perceptron classifying large images is often
larger than the classification difficulty would warrant.
Instead of resampling the images to a smaller size before
being passed to the network, however, we may define a
‘ resampling neuron’ (representative perhaps of a neural
cluster) that is part of the network as any other neuron.
Consequently, the evolutionary algorithm need only



optimise this graph of neurons, not several paradigmatically
distinct stages of a hybrid architecture.

Neighbouring processors of different types, however, may
not be able to communicate unless a uniform
communication protocol exists for all processors. We
instead propose to only allow compatible (but not
necessarily identical) processors to become neighbours,
effectively mimicking the existence of distinct
neurotransmitter pathways found in the brain. For this
purpose, we implemented a type verification system that
requires each hyperedge to define the processor types by
which it can be connected to other hyperedges. Hyperedges
cannot be added to a subhypergraph unless they fit into the
existing type context. Thus, only a single static check at the
time of the conception of a subhypergraph is needed – but
more on this later.

Cell Expression
For convenience, let us define a cell  to correspond to the
typed hyperedge and the associated production. A cell and
its components are shown in Figure 3. Each cell comprises
an array of typed input references to external processors that
the components of this cell can access. The cell also
includes one or more of its own processors that can access
these references. Cells may additionally define a
subhypergraph, or cell graph, by which the cell i s replaced.
An array of typed output references grants other cells access
to the processors of this cell and the cells of the cell graph.
We can broadly classify cells into non-terminals that define
a cell graph, and terminals that only consist of a processor.
In the latter case, the cell merely functions as a processor’s
interface to other processors.

Figure 3: A cell and its principal components (see text for
description).

During cell expression, non-terminal cells are replaced by
graphs of other cells, which, if non-terminal, are replaced by
further graphs. Starting from any non-terminal cell , a
diverging pathway through a network of cell replacements is
followed, until all remaining cells are terminals and the
graph is completed (see Figure 4 for a depiction of this
process). Having attempted to justify graph replacement on

the basis of gene expression, this is where the relationship is
strongest. It is not the genes that an organism holds that
define it as much as the genes that it expresses. In our model
the set of all cells represents the gene pool of all organisms.
This pool is dispersed among different organisms in a
distributed system like the biosphere. Modelli ng the gene
pool as a single entity, however, gives us a duplication-free,
easily assessable representation. Species, or networks of
processing units, are differentiated by their start positions,
i.e. start cells, within this gene pool.

Figure 4: Automata networks are constructed by cell
replacement. Transitions between cells are depicted in the
left half, the resulting network of processors in the right
half. Starting with cell A, each replaced cell generates a
subgraph of processors and/or cells that are also replaced
(dotted arrows designate a cell ’ s replacement graph).



Cell Evolution
Given a distribution of pattern-label relationships, e.g. faces
and associated names, we want to find the network that best
approximates the mapping between pattern (input to the
network) and label (output of the network). Not all cells
represent candidates for such networks; some lead to
subnetworks employable as building blocks by others.
Unlike these, however, candidate networks must have an
interface that can be linked into an array of external
processors that provide and collect inputs and outputs. All
processors, including those of the network, are then updated
for several cycles until a stable output is generated. A
performance rating for the network is computed by
comparing the obtained outputs with the expected outputs.

The network is then re-grown from its start cell , but this
time with a mutation in one of the cells that were expressed
during this process. If the resulting network performs better
than the earlier one, it replaces it. That is, a new cell is
generated with the mutation and added to our set of cells
that constitute the gene pool. If the original cell
corresponded to a building block shared by other candidate
networks, the start cell of the tested network and all
subsequently expressed cells that refer to the new cell must
be changed, as also shown in Figure 5.

 This is an expensive process and there is a (physical)
limit on how many different cells there can be, effectively
an information limit on the gene pool. If this limit is
exceeded, mutation cannot create additional new cells. Only
if a cell i s not referenced by any other cell will it be
removed to make room for new cells. The choice of cells
being mutated clearly has an effect of the efficiency of this
system, and we are still seeking criteria for guiding this
choice. Our model so far requires a cell to pass the number
of references to it, as well as its performance rating
(originating in the objective function), to the cells to which
it refers. The rating of a cell i s always the best rating it has
received. Extensively referenced cells with high ratings are
less likely to be mutated, thereby focusing any change upon
less utili zed cells where improvements are more likely and
less expensive to achieve.

Mutations are applied to the cell graph defined by each
cell . Several different kinds of topological mutation have
been implemented, including addition, deletion or
substitution of cells, as well as reshuff ling of references
between cells. For the context-free graph grammar not to
violate any type constraints, each mutation must retain the
type correctness of the graph to which it applies. It also
needs to ensure that all references are defined, so as to avoid
processors trying to access non-existent data. A feed-
forward network topology can be enforced by assigning
cells an order in which they are connected.

Topological mutations are the only means of change – no
recombination (crossover) operator is modelled, because
cell substitution is equivalent to subtree-swapping in genetic
programming and therefore all that is needed.  We have also
not considered weight optimisation, as it can be well argued
that competitive learning or backpropagation techniques are
much more effective for this purpose than evolution, and
can be easily integrated into the respective processors that
constitute the network.

The discussed model of cell expression allows for
recursion, which can be beneficial in attaining a network
representation that is modular on several scales. However, it
also requires a mechanism for termination, as the network
may otherwise grow indefinitely. In our model the decision
of replacing a cell has therefore been delegated to a
developmental processor that is part of each cell . It can
initiate cell replacement based on the state of the cell or
components thereof. At present, its sole purpose is to tally
recursions based on a list of previous cell replacements it
has received from the corresponding processor of the cell
that created it. If the number of recursions is greater than an
evolved limit, the cell will not be replaced. This could leave
some references between processors undefined – a gap in
the graph. For this reason, all non-terminal cells are
derivatives of terminal cells, where the cell graph overrides
any existing output references to native processors. Network
development can therefore be terminated at any stage, as all
cells are possible terminals.

Figure 5: Mutations are applied at any stage during graph
rewriting. In this case, cell Z is mutated when triggered by
cell G, which is triggered by cell A. If the resulting
processor network is superior to the original network, Z will
be replaced by a new Z with this mutation, and G and A
replaced by a new G and A that refer to the new Z and G.
The original Z and G must be retained, since B may perform
worse with the new Z.

Conclusion
In this paper we have proposed a graph rewriting system
that can construct automata networks. Our goal is to attain a
modular, hence efficient, representation for evolving the
topology of these networks. The productions of a collective
graph grammar, the equivalent of a gene pool, are shared
among and evolved according to all the networks of a
population. Experiments will have to show whether our
approach leads to the expected improvements in



convergence, especially on large-scale networks needed for
such tasks as image classification. An open question that
requires further research is how to best evaluate the
usefulness of new productions and keep the gene pool
maximally diverse. We also plan to extend our model from
growing networks to maintaining and adapting their
topology in changing conditions. With network ontogenesis
controlled by components of the network itself, the
groundwork for this has been laid.
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