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Abstract

Artificial neural networks and aher connedionist models of
computation are frequently credited with biologicd
plausibility. Since biologicd systems are products of
Darwinian evolution, network optimisation by artificial
evolutions has considerable gped. However, the
computational expense of this can become prohibitive unless
an emphasis is placel on moduarity and reuse. Gene
expresson lolds the answer to this. Genes are trandated into
proteins that self-organize into phenotypic traits such as the
brain, with feedbadk loops controlling the further expresson
of genes. In this paper we present a generdizaion d this
mecdhanism, a ontext-free graph grammar that describes a
graph o finite-state aittomata. The graph is generated by
repladng hyperedges with subgraphs of automata and aher
hyperedges acording to a set of hypergraph productions.
These automata need na be homogeneous, eg. they may
correspond to different types of neurons, refleding the
diversity of neurons in the brain. Desirable hypergraph
productions are retrieved from a popuation d productions,
which evolve by mutation o existing productions and
subsequent seledion against a user-defined criterion.

Introduction

Automata networks are networks of finite-state automata
that update their respedive states acording to the states of
their neighbours (Tchuente, 1988. Neural networks and
cdlular automata ae spedfic instances of this connedionist
model of computation and are distinguished by the types of
finite-state automata and interconnedion gaph chosen.
Unlike the serial architecdure of modern computers, the
scadability of automata networks is not reliant on a
continued shrinkage of circuitry. Automata networks adhere
to the same principle of distributed paralelism
charaderizing the human brain, yet while the brain seems
sow and large mmpared to a computer, few would dispute
its exceptional capabilities. The evident viability of this
principle, however, has not trandated into widespread
implementation. Serial machines are eay to program — the
step by step transformation from problem to solution is
often intuitive. Conversely, handcrafting an automata
network for a spedfic gplicaion can be eceelingly
difficult.

The popularity of neural networks over other automata
networks is principaly due to the effedive leaning
algorithms that can be and have been devised for them.
Gradient seach based techniques such as badkpropagation
(Rumelhart, Hinton & Willi ams, 1986 are the most widely
employed of these, but necessitate finding a differentiable
objedive function that corresponds to the problem at hand.
For weight leaning in a multilayer perceptron with
continuous threshold functions this is a straightforward
exercise. For the majority of other leaning problems,
however, it is not. Even with a perceptron, we therefore
encounter some limitations.

Weights are meant to model the synapses between
biologicd neurons. Weight learning hence reflects synaptic
change, which is a major source of functional change in the
brain — but not the only. Adult neurogenesss, i.e. the
perpetual incorporation of new neurons into neural
structures, has been long conjedured and shown in models
to play a aucia rolein brain plasticity and leaning (Ceachi
et al., 2002). The dassc example is the seasona deah and
regrowth of neurons in canaries, which renew their yealy
repertoire of songs in this manner (Alvarez-Buylla, Ling &
Nottebohm 1992. Experimental evidence of adult
neurogenesis in the human brain has also been reported
(Erikson et a. 1998.

Weight leaning is not the only possible — or even
necessary — form of adaptation in the perceptron either. In
fad, the success of weight learning is often dependent on
the number and arrangement of automata and edges within
the network, which is not in any way adjusted by
badkpropagation. A range of heuristic dgorithms have been
suggested that attach or prune cmponents of the network as
warranted (Alpaydim, 1994, but none can claim to have an
immediate biologicd equivalent.

Evolutionary Optimisation

Nervous systems are shaped not only by their environment
but also by genetic fadors, which are the product of
evolution. Darwin's theory of evolution explains the
adaptation of spedes by the principle of natural seledion,
which favours those spedes that are fittest, i.e. most adapted
to their environment, and consequently most successful at
reproducing (Darwin, 1859. The notion of universal



Darwinism (Dawkins, 1983 assrts that the same
charaderistics that make life susceptible to evolutionary
change can aso be found in other systems. Plotkin (1993
has proposed the g-t-r heuristic as the modus operandi of
evolution, comprising the three phases of generation,
testing, and regeneration.

Numerous evolutionary algorithms have been devised that
exploit this heuristic for the optimisation of functions.
Common to al of these is the notion of increasing the
overal fitness of a population of ‘spedes, say, different
parameter choices, by repladng poa spedes with improved
ones (Badk, 1996. A population of offspring is generated
from the existing population by means of applying mutation
and/or recombination to seleced multi-sets of spedes (see
Figure 1). Those that are seleded form a new population;
the cycleisrepeaed until a spedesis deemed sufficiently fit
as measured on some user-defined criterion. Evolutionary
algorithms have been successfully and extensively applied
towards the optimisation of automata networks, cdlular
automata (Mitchell, Crutchfield, & Das, 1997) as well as
neural networks (Y ao, 1999).
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Figure 1: Evolutionary algorithms generate an offspring
population of candidates from an existing population; the
fittest candidates are subsequently selected as parents for
the next generation.

While a evolutionary algorithm will always converge
upon a globally optimal solution gven sufficiently large
mutations, it may take agood ced longer than the user can
aff ord. The number of samples needed to estimate the space
of al possble solutions increases exponentially with the
number of parameters constituting ead solution. This ‘curse
of dimensionality’ plagues most statisticd leaning
problems and is not easily overcome. A noteworthy example
isthe Golem Projed (Lipson & Pollac, 2000, a distributed

computing projed utilizing the processng wits of over
30000 Internet usersto evolve robds. Because of (or despite
of) the cnsiderable resources being applied, it could be
shown that robds beyond a cetain level of complexity were
impradicd to evolve. As more components were added to
the roba, the parameter permutations grew so large that the
solution spacebecame intradable.

Genes & Modules

Genetics has extended evolutionary theory by the concept of
heredity, with genes ading as transfer units. The genes of an
organism constitute its genotype, or genome, which is
encoded into several chromosomes of DNA. Natural
seledion applies to the phenotype, which is an expression of
the genotype within a given environment. Genes composed
of DNA are transcribed into RNA, translated into
polypeptides, and then processed into proteins which self-
organize into phenotypic traits (Futuyma, 1998. Complex
feedbadk loops control the further expresson of genes.

Genetic dgorithms st themselves apart from other
evolutionary algorithms by adknowledging this genotype-
phenotype distinction. The intricades of molecular genetics
are typicdly omitted, however, and a far simpler
interpretation function translates what usually amounts to a
binary string into a mnstruct whaose fitnesscan be assssd.
With the simplest approad, a dired encoding scheme, each
gene describes a spedfic detail of the phenotype, such asthe
value of a particular weight in the network. According to the
building block hypothesis, gene sequences that confer
above-average fitness (so-cdled building blocks) bemme
increasingly dominant in subsequent generations and form
instances of larger sequences that confer even greaer fitness
(Holland, 1992).

For a gene sequence to be reusable in different contexts,
modularity is implied. A system can be understood as
modular if it can be described in terms of parameters subsets
— modules — that are more tightly coupled internaly, i.e.
between parameters of a single subset, than externally, i.e.
between parameters of different subsets (Simon, 1996.
Since asubset that is datisticdly independent of its context
can be optimised on its own, a modular system becomes far
simpler to opimise on the whole.

But while modularity can acount for much of the
eff ectivenessof genetic dgorithms, most genetic dgorithms
do little to fadlitate and exploit modularity. In a typicd
genetic dgorithm the proximity of genes is unrelated to any
dependencies between them, and crossover operators
indiscriminately creae and destroy modules. Moreover, an
evolved solution with multiple instances of the same
module, i.e. a solution that exhibits regularity, cannot be
represented in a mpad manner. This is gedficdly
relevant when representing large onstructs such as the
human brain, which contains about 10" neurons with an
average of 10° connections each, but has to be excoded in a
fradion of the 2x10° base pairs that constitute the human
genome. A dired encoding scheme is clealy unsuitable for
this.
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Figure 2: Network construction according to cellular
encoding. The left half of this figure depicts a tree of graph
rewriting instructions (S = sequential division; P = parallel
division; R = recurrent link; E = end program); the right
half is the developing network. Dotted arrows point to the
instruction that applies to the cell at each step.

Algorithmic Encoding

The dgorithmic complexity of a structure is the minimum
length of an algorithm that generatesit (Li & Vitanyi, 1993.
While dgorithmic complexity is an incomputable measure
in itself, it highlights the alvantage of agorithmicdly
describing a structure: Any regular structure an be cded
by a more cmpad algorithm. The human genome is
therefore best understood as an algorithm, not a blueprint.
Each of our cdls contains a wpy of our genome, which
governs our development. Cells vary in functionality
depending on the genes they express. Kennedy (1998
simulated the evolution of cdls in which such medanisms
operate. Our goal isto determine an algorithmic description
for automata networks along these same lines.

Lindenmayer (1963) introduced L-systems in an attempt
to describe the development (ontogenesis) of linea and
branching structures in plants. L-systems are parallel string
rewriting systems that rewrite astarting string into a new
string by applying a set of production rules to al symbals of
the dstring in paralel. Kitano (1990) and Boers &
Sprinkhuizen-Kuyper (200) employed L-systems to
describe neural networks, necesstating a trandation of the

generated string into a network. Gruau (1994 proposed an
dternative gproach, cdled cdlular encoding, which
represents transformations to cedls as nodes on a binary tree
as down in Figure 2. Different subtrees refled the different
transformations applied to dfferent cdls following cdl
division. Subtrees can be swapped with those of other
genomes, fadlitating reuse of ‘useful’ subnetworks,
analogous to the automatic reuse of functions in genetic
programming (Koza 1994). The reuse of subnetworks
within the same network, however, requires definition of an
operator that references other parts of the tree This
effectively adds cycles to a tree ad raises a fundamental
guestion —why not begin with a graph in the first place?

Gene epression in biologicd organisms e a gene
modulate the adivity of itself and oher genes. In a
quantized model of this, ead gene @an be interpreted as an
instruction that exeautes and then triggers other genes. The
genotype thus bemmes a direded graph of instructions
(genes) that is continuously traversed to construct the
phenotype. Our propcsal is to evolve such gaphs to
construct automata networks. More formally, we intend for
a ontext-free graph rewriting system, where eab gene
maps to a graph to be extended by other genes.

Method

Edgesin a graph usualy have arity two, that is, they conned
two vertices. A hyperedge mnneds svera vertices, and a
graph with hyperedges is hence cdled a hypergraph.
Whereas in a graph the vertices are often regarded as objeds
and edges as relationships between these objeds, in a
hypergraph it is quite intuitive to reverse these roles. This
suits us well. We can define hyperedges as incomplete
segments of the graph that are wnneded by vertices. The
graph can gow by repladng labelled hyperedges with
subhypergraphs acwording to a set of hypergraph
productions (Habel, 1992). The doice of productions
congtitutes the genome that defines the output of this
hyperedge replacement system.

A graph generated by the hyperedge replacement system
bemmes an automata network by adding the gpropriate
semantics to vertices and edges. Our dedsion to evolve
automata networks rather than neural networks, as other
systems have done, arises from the common misperception
of neural networks as networks of homogeneous threshold
units. Biologicd neurons typicdly belong to many
caegories with gealy differing computational properties,
with some, eg. starburst cdls (Euler, Detwiler, & Denk,
20(), extending well beyond the dassica threshold model.

Heterogeneous networks also offer advantages with
resped to implementation. Certain operations can be
acomplished far more spedily if done natively on a serial
computer, rather than as a simulation of a neural network.
For instance, the number of weights and hence training time
of a multil ayer perceptron classfying large images is often
larger than the dasdficaion difficulty would warrant.
Instead of resampling the images to a smaller size before
being passed to the network, however, we may define a
‘resampling neuron’ (representative perhaps of a neural
cluster) that is part of the network as any other neuron.
Consequently, the evolutionary algorithm need only



optimise this graph of neurons, not several paradigmaticdly
distinct stages of a hybrid architedure.

Neighbouring procesors of different types, however, may
not be @le to communicae unless a uniform
communicdion protocol exists for all procesors. We
instead propcse to only alow compatible (but not
necessarily identicd) procesors to become neighbours,
effectively mimicking the eistence of distinct
neurotransmitter pathways found in the brain. For this
purpose, we implemented a type verificaion system that
requires ead hyperedge to define the processor types by
which it can be mnneded to ather hyperedges. Hyperedges
cannot be alded to a subhypergraph urlessthey fit into the
existing type cntext. Thus, only a single static check at the
time of the @nception of a subhypergraph is needed — hut
more on this later.

Cell Expression

For convenience, let us define acdl to correspond to the
typed hyperedge and the associated production. A cdl and
its components are shown in Figure 3. Each cdl comprises
an array of typed inpu references to external processors that
the cmponents of this cdl can acaess The cdl aso
includes one or more of its own procesors that can acess
these references. Cells may additionally define a
subhypergraph, or cdl graph, by which the cdl is replacel.
An array of typed output references grants other cdls access
to the processors of this cdl and the cdls of the cdl graph.
We can broadly classify cdls into nonterminals that define
a cdl graph, and terminals that only consist of a procesor.
In the latter case, the cdl merely functions as a processor’s
interfaceto other processors.

Input References
Cell Replacement
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Figure 3. A cdl andits principal comporents (seetex for
description).

During cdl expresson, nonterminal cdls are replaced by
graphs of other cdls, which, if non-terminal, are replacel by
further graphs. Starting from any non-terminal cdl, a
diverging pathway through a network of cdl replacementsis
followed, urtil al remaining cdls are terminals and the
graph is completed (see Figure 4 for a depiction of this
process. Having attempted to justify graph replacement on

the basis of gene expression, this is where the relationship is
strongest. It is not the genes that an organism holds that
defineit as much as the genes that it expresses. In our model
the set of all cdls represents the gene pod of all organisms.
This pod is dispersed among different organisms in a
distributed system like the biosphere. Modelling the gene
pod as asinge entity, however, gives us a duplicdion-free
eaily asessble representation. Spedes, or networks of
processng units, are differentiated by their start paositions,
i.e. start cdlss, within this gene pod.

Figure 4: Automata networks are onstructed by cdl
replacement. Transitions between cdls are depicted in the
left half, the resulting retwork of processors in the right
half. Sarting with cdl A, each replaced cdl generates a
subgaph d processors andor cdls that are also replaced
(dotted arr ows designae a cdl’s replacement graph).



Cedll Evolution

Given a distribution of pattern-label relationships, e.g. faces
and as2ociated names, we want to find the network that best
approximates the mapping between pattern (input to the
network) and label (output of the network). Not all cdls
represent candidates for such nretworks, some lead to
subnetworks employable & building blocks by others.
Unlike these, however, candidate networks must have an
interface that can be linked into an array of external
procesrs that provide and colled inputs and outputs. All
processors, including those of the network, are then updated
for several cycles until a stable output is generated. A
performance rating for the network is computed by
comparing the obtained outputs with the expeded outputs.

The network is then re-grown from its gart cdl, but this
time with a mutation in one of the cdls that were expressed
during this process If the resulting network performs better
than the ealier one, it replaces it. That is, a new cdl is
generated with the mutation and added to our set of cdls
that congtitute the gene pod. If the origina cdl
corresponded to a building block shared by other candidate
networks, the start cdl of the tested network and all
subsequently expressed cdls that refer to the new cel must
be dhanged, as also shown in Figure 5.

This is an expensive process and there is a (physicd)
limit on how many different cdls there can be, effedively
an information limit on the gene pod. If this limit is
exceeaded, mutation cannot crede alditional new cdls. Only
if a cdl is not referenced by any other cdl will it be
removed to make room for new cdls. The doice of cdls
being mutated clealy has an effed of the dficiency of this
system, and we ae still seeking criteria for guiding this
choice Our model so far requires a cdl to passthe number
of references to it, as well as its performance rating
(originating in the objedive function), to the céls to which
it refers. The rating of a cdl is always the best rating it has
recaved. Extensively referenced cdls with high ratings are
lesslikely to be mutated, thereby focusing any change upon
less utili zed cdls where improvements are more likely and
lessexpensive to achieve.

Mutations are gplied to the cdl graph defined by eadh
cdl. Severa different kinds of topdogicd mutation have
been implemented, including addition, deletion or
substitution of cdls, as well as reshuffling of references
between cdls. For the cntext-free graph grammar not to
violate ay type @nstraints, eady mutation must retain the
type oorredness of the graph to which it applies. It also
nedals to ensure that all references are defined, so asto avoid
procesors trying to access non-existent data. A feed-
forward network topdogy can be enforced by asdgning
cdlsan order in which they are mnneded.

Topologicd mutations are the only means of change — no
recombination (crosover) operator is modelled, becaise
cdl substitution is equivalent to subtree-swapping in genetic
programming and therefore dl that is needed. We have dso
not considered weight optimisation, as it can be well argued
that competitive leaning or badkpropagation techniques are
much more effedive for this purpose than evolution, and
can be eaily integrated into the respedive procesors that
constitute the network.

The discuseed model of cdl expresson alows for
reaursion, which can be beneficia in attaining a network
representation that is modular on several scdes. However, it
also requires a mechanism for termination, as the network
may otherwise grow indefinitely. In our model the dedsion
of repladng a cél has therefore been delegated to a
developmental processor that is part of ead cdl. It can
initiate cél replacement based on the state of the cél or
components thereof. At present, its le purpose is to tally
reaursions based on a list of previous cdl replacements it
has recaved from the crresponding processor of the cél
that creaed it. If the number of reaursionsis greder than an
evolved limit, the cdl will not be replacel. This could leave
some references between processors undefined — a gap in
the graph. For this reason, al nontermina cdls are
derivatives of terminal cdls, where the cdl graph overrides
any existing output references to native procesrs. Network
development can therefore be terminated at any stage, as all
cdlsare posdble terminals.

Figure 5: Mutations are applied at any stage during graph
rewriting. In this case, cell Z is mutated when triggered by
cell G, which is triggered by cell A. If the resulting
processor network is superior to the original network, Z will
be replaced by a new Z with this mutation, and G and A
replaced by a new G and A that refer to the new Z and G.
The original Z and G must be retained, since B may perform
worse with the new Z.

Conclusion

In this paper we have propased a graph rewriting system
that can construct automata networks. Our goal isto attain a
modular, hence dficient, representation for evolving the
topdogy of these networks. The productions of a mlledive
graph grammar, the eyuivalent of a gene pod, are shared
among and evolved acwording to al the networks of a
population. Experiments will have to show whether our
approach leads to the epeded improvements in



convergence, espedally on large-scde networks needed for
such tasks as image dassification. An open question that
requires further reseach is how to best evaluate the
usefulness of new productions and keeg the gene pod
maximally diverse. We dso plan to extend our model from
growing networks to maintaining and adapting their
topdogy in changing conditions. With network ontogenesis
controlled by components of the network itself, the
groundwork for this has been laid.
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