
Graph Grammar Encoding and Evolution
of Automata Networks

Martin H. Luerssen
School of Informatics and Engineering
Flinders University of South Australia

PO Box 2100, Adelaide 5001, South Australia
Martin.Luerssen@infoeng.flinders.edu.au

Abstract
The global dynamics of automata networks (such as
neural networks) are a function of their topology and the
choice of automata used. Evolutionary methods can be
applied to the optimisation of these parameters, but their
computational cost is prohibitive unless they operate on a
compact representation. Graph grammars provide such a
representation by allowing network regularities to be
efficiently captured and reused. We present a system for
encoding and evolving automata networks as collective
hypergraph grammars, and demonstrate its efficacy on the
classical problems of symbolic regression and the design
of neural network architectures.

Keywords: Genetic algorithms, genetic programming,
graph grammars, neural networks

1 Introduction
Backpropagation (BP) (Rumelhart, Hinton & Williams,
1986) has become the quasi-standard approach for
optimising the weights of a multilayer neural network.
However, nothing remotely as effective exists for
optimising the network topology. Heuristic local search
algorithms such as Cascade Correlation (Fahlman &
Lebière 1990) and Optimal Brain Damage (Cun, Denker,
& Solla 1990) can only explore a subset of topologies and
are intrinsically limited by the lack of gradient
information for the discrete topology space (Angeline et
al., 1994).

Evolutionary algorithms are a well-established search
method (Bäck, 1996) and have found widespread
application towards optimising virtually every aspect of
neural networks, including their topology (Yao, 1999).
Determining the best neural network topology is
fundamentally about searching the space of feasible
graphs. Graph evolution itself has been an rare topic of
research, however. We here present a powerful new
means of representing and evolving graphs towards the
purpose of topologically optimising neural networks and
automata networks in general.

Copyright © 2005, Australian Computer Society, Inc. This
paper appeared at the 28th Australasian Computer Science
Conference, The University of Newcastle, Australia.
Conferences in Research and Practice in Information
Technology, Vol. 38. V. Estivill-Castro, Ed. Reproduction for
academic, not-for profit purposes permitted provided this text is
included.

2 Fundamental Background

2.1 Automata Networks
An automata network (Goles & Martinez, 1990) is a
system (C, A, Sn, N, L) where C is a set of cells, A is an
alphabet of states, Sn : C → A is the state at time n, where
n = 0, 1, 2, …, M. ∀ c ∈ C: N(c) is the neighbourhood of
c, where N : C → P(C) is the neighbourhood system and
P(C) the power-set of C. S is updated according to
L : C → D where D is a set of local dynamic rules
δN(c): S(c)n-1 ! S(c)n. The global dynamic rule is formed
by ∆(S) = ∪ c∈ C (δN(c)(c)) and defines the behaviour of the
system. Neural networks comprise a specific instance of
automata networks. The optimisation of automata
networks towards a desirable ∆(S) hence also includes
neural networks, with the added benefit of generality.

2.2 Evolutionary Search
According to the No Free Lunch theorem for optimisation
all search strategies – without further assumptions – are
equally effective on average over all problem domains
(Igel & Toussaint, 2003). Although this may initially
discourage from conceiving of a general search strategy,
most problems of interest are not arbitrary, but exhibit
some sort of regularity. By drawing on previously
discovered solutions, we should thus be able to make an
informed decision on where to look next. This is known
as generic heuristic search (Toussaint, 2003), and
evolutionary algorithms constitute a general instance
thereof.

Evolutionary algorithms all share the notion of increasing
the overall fitness of a population of diverse solutions by
replacing poor solutions with better ones (Bäck, 1996). A
population of offspring solutions is generated from the
existing population by means of applying mutation and/or
recombination. The best solutions are then selected to
form a new population. The inspiration for this is
Darwin’s theory of evolution, which explains the
adaptation of species by the principle of natural selection,
favouring those species that are fittest, i.e. most adapted
to their environment, and consequently most successful at
reproducing (Darwin, 1859).

The efficacy of evolution at optimising networks depends
on its ability to handle the Curse of Dimensionality - the
exponential growth of possible network topologies with
network size. Unless evolution learns from previous
explorations, this quickly becomes intractable. In view of

the simplicity of the Darwinian principle, the capacity for
complex functional adaptation in biological systems is
remarkable. However, the likely source of this is not a
sophisticated adaptation mechanism, but a sophisticated
functional representation upon which simple mechanisms
operate (Toussaint, 2003).

2.3 Genetic Algorithms
Genetics has extended evolutionary theory by the concept
of heredity, with genes acting as transfer units. The genes
of an organism constitute its genotype, or genome, which
is encoded into several chromosomes of DNA. Natural
selection applies to the phenotype, which is the collection
of the individual’s selection-relevant features. Genetic
algorithms (GAs) (Holland, 1992) distinguish themselves
from other evolutionary algorithms by acknowledging the
genotype-phenotype distinction. A common functional
representation is the direct encoding scheme, which
assumes a one-to-one correspondence between the genes
and the phenotypical traits subjected to the selection
process. The simplicity of such a mapping might appear
desirable, but there are notable drawbacks to it. Genotype
size becomes directly proportional to phenotype size,
elevating the prospect of a combinatorial explosion.

It therefore becomes critical to the evolutionary search
process that an effective exploration strategy is employed,
but this is principally dependent on the choice of
mutation operators and the genetic representation upon
which they operate. Thus, an exploration strategy that
adapts to the problem appears to necessitate the
adaptability of either the mutation operators or the nature
of the genotype-phenotype mapping itself (Wagner &
Altenberg, 1996), but this is not so. We can also achieve
an adaptable exploration by applying neutral variations to
the genotype, which affect phenotype evolution by
influencing mutation probabilities and thereby encoding
distinct exploration strategies. The drawback of a direct
encoding scheme is that it allows for no neutrality beyond
what is already intrinsic to the phenotype space.

2.4 Grammar-based Coding
Grammar-based encoding schemes use productions for
genes, the expression of which forms the phenotype. The
indirectness of this encoding allows for a many-to-one
mapping with a corresponding richness in possible
genotypic representations. Moreover, changes to
individual productions can affect whole groups of
phenotypic variables, a property known as pleiotropy and
also observed within biology. For example, the mutation
of a single control gene called eyeless in the early
ontogenesis of a Drosophila Melanogaster results in the
growth of additional, functionally complete eyes on its
wings, legs and antennae (Halder et al., 1995).

Kitano (1990) and Boers and Kuiper (1992) are some of
the earliest examples of grammar-based encodings of
neural networks. Both use Lindenmayer-systems (L-
systems), which were introduced by Lindenmayer (1968)
to describe the morphogenesis of linear and branching
structures in plants. L-systems are parallel string
rewriting systems that rewrite a starting string into a new

string by applying a set of production rules to all symbols
of the string in parallel. A graph is obtained from this
string by interpreting the terminal symbols as graph
transformations.

Following these earlier approaches, Gruau (1994)
introduced Cellular Encoding, which represents a graph
as a tree of operators. During graph rewriting, each node
of the graph reads the tree at a different position and is
duplicated, reconnected or otherwise modified depending
on the operator that is read. The tree is evolved by genetic
programming (GP) (Koza, 1992). GP is usually applied
towards program evolution and provides for
recombination of program trees by branch-swapping,
which, unlike most other genetic algorithms, allows for
solutions of different sizes and shapes. GP is a powerful
and proven technique, and Cellular Encoding, as a tree-
based graph encoding, directly benefits from this.

The sets of allowed graph transformations play a key role
in each of the methods discussed so far. Any chosen set
imposes a bias towards those graphs that are simplest, or
at all possible, to describe with this set. Kitano’s
Grammar Encoding Method (1990), for instance, is
inherently restricted to networks with nodes of a single
type only. Inevitably, there has been some disagreement
on what is the best set of transformations for a given
problem. Luke and Spector (1996) have proposed cellular
encoding by edge operators rather than node operators,
and de Jong and Pollack (2001) use both types in their
system. Since the choice of graph transformations is so
contentious, a system for directly evolving a graph
grammar, and hence the transformations that generate the
desired graphs, must necessarily emerge as the next step.

3 The Cellular Production Framework

3.1 Hyperedge-Replacement Grammars
A multitude of graph rewriting systems have been
proposed in the past, and a prominent subset of these are
the (hyper-)edge replacement systems (Habel, 1992).
Edges in a graph normally have arity two, that is, they
connect two vertices. A hyperedge connects several
vertices, and a graph with hyperedges is hence called a
hypergraph. Formally, a hypergraph over a fixed set of
labels C is a system (V, E, s, t, lE) where V is a finite set
of nodes, E is a finite set of hyperedges, s : E ! V* and
t : E ! V* are two mappings assigned a sequence of
sources s(e) and a sequence of targets t(e) to each e ∈ E,
and lE : E ! C is a mapping labelling each hyperedge. If
we wish to attach a hypergraph to another graph, we must
define a sequence of begin nodes (corresponding to the
source nodes) and a sequence of end nodes
(corresponding to target nodes). A multi-pointed
hypergraph over C is a system H = (V, E, s, t, lE, begin,
end) where (V, E, s, t, lE) is a hypergraph over C and
begin, end ∈ V*.

Whereas in a graph the vertices are often regarded as
objects and edges as relationships between these objects,
in a hypergraph it is quite intuitive to reverse these roles.
Hyperedges can thus be interpreted as incomplete
segments of the graph that are connected by vertices. The

graph can grow by replacing labelled hyperedges with
multi-pointed hypergraphs according to a set of
hypergraph productions. Let N ⊆ C be the set of
nonterminals, T ⊆ C be a set of terminals and Hc be the
set of all multi-pointed hypergraphs. A hypergraph
production is an ordered pair p = (A, R) with A ∈ N called
the left-hand side (LHS) of p and R ∈ Hc is called the
right-hand side (RHS) of p. A hyperedge-replacement
grammar is a system HRG = (N,T,P,Z) where P is a finite
set of hypergraph productions over N and Z ∈ Hc is the
axiom.

3.2 Grammar-Guided Sampling
A graph generated by the hyperedge replacement system
becomes an automata network by adding the appropriate
semantics to the terminals – for a neural network these
become threshold automata, for example. Evolving a fit
network hence means evolving a set of hypergraph
productions that generate this network. Unlike what is
assumed in the (L-system) production evolution of Kitano
(1990) and Boers and Kuiper (1992), our model does not
require each network to maintain its own production set
(Luerssen & Powers, 2003). Only one instance of a
production has to exist, even if it is involved in the
derivation of different networks. The production set
shared by all networks is analogous to the gene pool of
biological organisms. It is not the genes that an organism
holds that define it as much as the genes that it expresses.
Just as an organism is a sample of the biological gene
pool, the derived networks are samples of our grammar.

Generating solutions from a grammar has been previously
researched within the context of GP (Whigham, 1995).
The process of modifying such a grammar to produce the
best possible solutions is perhaps most refined in
Grammar Model-based Program Evolution (GMPE)
(Shan et al., 2004). GMPE applies a stochastic hill-
climbing search to learn a stochastic context-free
grammar from the best solutions in the existing
population. A fraction of the next generation is then
sampled using this grammar, and the procedure repeated;
novelty arises from adding random solutions to the
population. In contrast, our approach is based on a fully
deterministic grammar with unique nonterminals, a
constraint that allows for only a fixed number of
derivations exactly matching the intended population of
networks. Productions are not learned from any existing
population, but modified directly, as elucidated in section
3.4.3. In fact, other than for caching purposes, no network
population has to be maintained from generation to
generation, as each network (and no other) can simply be
derived from the grammar.

3.3 Cellular Hypergraph Productions
The RHS of the productions constituting our system is a
special form of multi-pointed hypergraph Hs = (V, E, lV,
lE, begin, end) without any source and target mappings
but with a vertex labelling (including begin and end
nodes) lV : V ! C. The hypergraph production is
redefined as ps = (A, Rs, s, t), where s and t are a sequence
of sources and targets assigned to the edge labelled A, and
Rs is an instance of Hs. The production, rather than the

hypergraph, now defines the attachment of the hyperedge
– indeed the hypergraph is incomplete without the
production. We believe this simplifies hypergraph
mutation, since typing mismatches are now avoided when
replacing one hyperedge for another, and a high degree of
neutrality is still maintained. For convenience, ps will
from hereon be referred to as a cellular production. A
graphical representation is provided in Fig. 1.

Cellular productions individually describe only parts of a
hypergraph production; thus, more are typically needed to
construct the same graph. Also worth noting is a
resemblance to the Cartesian cells of Cartesian Genetic
Programming (CGP) (Miller & Thomson, 2000). CGP is
a variant of GP that constructs graphs from nodes with
labelled edges. Unlike cellular productions, Cartesian
cells are neither transformative nor generative. However,
recent, promising attempts have been made at applying
CGP to generate graph growing programs (Miller &
Thomson, 2003).

3.3.1 Cellular Scope
The possible sources and targets of a hyperedge depend
on the enclosing hypergraph. Since each node of the
hypergraph is labelled, source and target mappings can be
constituted by sequences of labels of the nodes available
for attachment. This is limited by scope in order to
minimize node searching and also to facilitate structural
modularity. The permitted sources of a hyperedge are:

1) the begin nodes of its enclosing hypergraph

2) the terminal nodes of its enclosing hypergraph

3) the end nodes of every replaced hyperedge
(including itself) within its enclosing hypergraph

The allowed targets of a hyperedge are:

1) the end nodes of its enclosing hypergraph

2) the terminal nodes of its enclosing hypergraph

3) the begin nodes of every replaced hyperedge
(including itself) within its enclosing hypergraph

s

b

s

b

s

b

e

t

e

t

e

t

v

T N NN

Figure 1: Diagrammatic representation of a cellular
production. Nonterminal N on the LHS is replaced by
the RHS hypergraph, where T is a terminal, N is a
nonterminal, s and t are source and target labels, b and
e begin and end node labels, and v is the terminal
label.

Significantly, item 3 allows hyperedges with matching
source/end or target/begin labels to link up even in the
absence of a vertex with that label in the enclosing
hypergraph. Edges incident on terminals, however, are
defined only partially by the cellular production model.
Edges between the terminal and the Hs end nodes are
resolved by the vertex and end-node labelling, but inputs
to the terminal must be established by the terminal itself.
In our subsequent experiments the implemented automata
use by default all inputs within the relevant scope.

3.4 Evolving Automata Networks
The set of cellular productions defines and is defined by
the graphs and, ultimately, automata networks that can be
derived from it. Our goal is to find automata networks
that perform well on the objective function, which means
finding the right cellular production set. The evolutionary
method we apply for this purpose can be summarized as
follows: Automata networks are derived from the starting
productions within the existing production set and tested
on the objective function. The poorest performing
networks are eliminated, as are all the productions that
hence become superfluous. New variants of existing
productions are then added to the production set to allow
for the derivation of a fixed number of new networks.
Within this framework, evolution is thus interpretable as
a repeated growing and pruning of an interlinked
production set.

3.4.1 Deriving Automata Networks
Graph rewriting is performed in parallel. Although for a
context-free grammar this has no effect on the shape of
the generated graph, it allows us to express the graph
rewriting as a distributed developmental process. For this
purpose, let us establish a developmental unit as a system
U = (P, Hs, c, UA), where P is the set of all productions,
Hs is an existing hypergraph, c is the label of a hyperedge
to be replaced, and UA is an associated ancestor U (can be
empty). Starting from a single U1, a graph can be
generated as follows. U1 retrieves a production p
matching label c from set P and replaces the occurrence
of hyperedge c in Hs with the RHS of the production p.
For each occurrence of a hyperedge E in the inserted
subhypergraph a new U2=(P, Hs, C(E), U1) is produced
and the replacement process repeated in parallel for each
new Un, until either no more hyperedges require
replacement or the number of previous instances of a
production in the replacement path exceeds a parameter
M ∈ ù + that is co-evolved with each production. Thus,
each production’s recursion depth is limited individually
rather than globally.

From the graph rewriting process we obtain a hypergraph
Hs, representing the developed network, as well as a set
of U that are interlinked into a (development) tree. This U
tree can be discarded if Hs is complete; however, the
initial Hs1 of U1 may change (see below), in which case
the final Hsn is incomplete or false. The U tree can be
used to modify Hsn according to the changes in Hs1,
instead of having to fully re-grow Hsn.

3.4.2 Evaluating Automata Networks
Once an automata network has been expressed, it must be
evaluated. Recurrent connectivity entails that the
evaluation cannot occur layer by layer as with a feed-
forward topology. Every automaton must be evaluated in
parallel for several cycles until either the outputs have
stabilized or a user-defined cycle limit is reached. We
achieve parallelism by splitting the automaton update into
two phases. First, each automaton updates its hidden state
based on the visible state of all the neurons to which it is
connected. Subsequently, each automaton turns its hidden
state into a visible state and continues with step one.

If the objective function is a typical pattern/label-
classification task, the network needs to be linked to the
appropriate sources and targets. For each possible source
and target defined by a particular pattern/label pair (or
time series thereof), an automaton is spawned whose state
matches that of the source or target for each cycle. A set
of automata representing a pattern/label pair constitutes
an initial Hs1, to which every network in the evolved
population will link according to the source and target
mappings of their respective starting production. States
retrieved by the target automata after several update
cycles automata are compared to the expected outputs and
an error for the network may thus be computed. Once all
networks are evaluated on this pattern/label pair, they are
connected to another Hs1 matching the next pair and the
evaluation continues. Unless otherwise specified, the
order in which the pattern/label pairs are presented is
random.

3.4.3 Mutating Automata Networks
New productions, and hence new automata networks, are
obtained by mutating existing productions. The mutation
operators comprise the addition, deletion and replacement

4

2

T
4

1 2

2

T
4

implicit

5

T
2

2

2

1

2

2

5

0

1

4
4

implicit

0

1

1

2

2

3

N
102

N
103

N
102

Figure 2: Two cellular production labels N102 and N103
and networks derived from these. N102 expresses a
terminal and N103 a nonterminal (N102). Edges are
defined by matching labels, with the exception of
terminal inputs, which are implicitly linked to all
visible begin nodes.

of terminal types and labels, non-terminals types, source
labels, target labels, begin node labels, and end node
labels of any cellular production. Mutations are the only
means of change; no recombination (crossover) operator
is modelled. The mutation of nonterminals already results
in a recombination of networks, comparable to subtree-
swapping in GP.

Mutations are applied during network derivation to one
production at a time, with a finite chance that any
expressed production is chosen for mutation and, if so, a
finite chance that one of its nonterminals is chosen
instead. A copy of the mutated production is created with
a unique LHS, and then mutated with respect to its
enclosing graph – this is particularly relevant for source
and target mutations. The mutated production replaces the
original production in all occurrences of the original
production during derivation.

Subsequent to evaluation, all the productions that have
been expressing this mutated production are copied, and
the copies modified so as to refer to the mutated instance,
not the original. This is repeated for all the productions
referring to the now modified productions, and so on,
until the starting production has also been modified. This
new starting production thus reflects the new, mutated
network.

3.4.4 Multi-objective Evolution
Performance is not the only important property of the
evolved network; size is another. We define network size
as the sum of its nodes and edges. A trade-off between
network performance and network size is to be expected,
with larger networks performing better and smaller
networks requiring less evaluation time and space. The
presence of multiple such conflicting objectives in an
optimisation problem means that typically there is no
single best solution. An algorithm that returns a set of
solutions is therefore preferable to an algorithm that
returns only one solution based on some weighting of the
objectives. This way, our system can evolve networks at
each possible size, with the expert user ultimately
selecting the most satisfying compromise. A similar
multi-objective approach has earlier been applied to GP
by Bleuer et al. (2001) and to neural networks by Abbass
(2003).

The majority of recently published multi-objective
evolutionary algorithms (MOEAs) use fitness assignment
based on Pareto-domination (Deb, 2001). A solution S1 is
said to dominate another solution S2 if S1 is no worse than
S2 in all objectives and better than S2 in at least one
objective. Ideally, the MOEA produces the Pareto
optimal set, the solutions not dominated by any other
solutions in search space. Even though the MOEA takes
multiple objectives into account simultaneously, it still
must transform all of these objectives into one fitness
measure, so that the EA can distinguish fit individuals
from less fit ones. The transformation is typically made
by assigning each solution a measure of its
nondominatedness.

If the number of networks is smaller than the number of
different sizes being explored, i.e. the Pareto set is

incomplete, then the MOEA should return a set of
nondominated networks that are spread evenly along the
Pareto boundary. Most MOEAs, ours included, apply
some form of phenotypical niching to achieve this, which
means that the spread is based on the objective function
values and not on structural differences within the
solutions themselves. Niching is used only as a secondary
measure of fitness: If individual S1 is more nondominated
than S2, S1 is preferred regardless of niching, whereas if
S1 and S2 have the same degree of nondominatedness, the
one residing in the most sparsely populated region of the
search-space is preferred. We assess population density as
simply the distance between a chosen solution and its
nearest neighbour.

In addition to the performance and size objectives, we
optimize towards a third objective, that of ’age’. The idea
is to provide a form of half-elitism within the multi-
objective framework, by imitating the trade-off between
age and phenotypic fitness that is observed in nature.
Newer solutions are given a temporary reprieve against
domination by superior but older solutions, which allows
genetic novelty to be temporarily retained.

4 Experiments

4.1 Symbolic Regression
Symbolic regression is about inferring a functional
mapping y = f(x) between a set of independent variables x
and a dependent variable y. Regression by neural
networks assumes an auxillary transfer function g (such
as the sigmoid), so that f(x) = WO · g(WH), where WO are
the weights from hidden to output layer, and WH are the
weights from input to hidden layer. Since multi-layer
neural networks of sufficient complexity can approximate
any mapping, the problem of regression primarily
becomes that of optimising weights within the context of
a specific model. In contrast, symbolic regression is about
generating answers directly in the symbolic language of
mathematics (Koza, 1992). Symbolic regression is
commonly used in theoretical studies of GP. From a set
of pre-specified elementary functions GP can construct a
mapping function f1(x) that best approximates the actual
f(x). Our system applied to symbolic regression can
generate graphs of these elementary functions. We thus
expect not only to discover solutions otherwise obtainable
by GP, but also solutions that constitute recurrence
equations.

4.1.1 Experimental Procedure
We first addressed the problem of regressing the quartic
polynomial f(x) = x4+x3+x2+x (Koza, 1992) and the
binomial-3 polynomial f(x) = (x+1)3 (Daida et al., 2001).
Fitness cases are 21 equidistant points generated by these
functions over the interval of x = [-1,1]. Starting from a
singular empty graph the system evolves a population of
100 graphs for each of 200 generations. Each graph is
composed solely of the binary functions {+, -, x}; any
undefined arguments of these functions are automatically
set to {0, 0, 1}, respectively. Labels are selected from a
set of 10, and only one function is allowed per
production. Networks are simulated for 10 time steps

before an output is retrieved and the mean squared error
(MSE) for each network is computed. Automata states are
reset subsequent to each simulation.

Two distinct parameter sets are tested: In the default set,
operators for different graph mutations are applied at
equal probabilities, and the probability of additional
mutations and the probability of nonterminal selection are
each set to half. In the “boosted” set, we bias the
multiobjective criterion towards performance by
automatically dominating the worst (highest error) 90%
of the population. Addition operators are applied at
double probability, additional mutations are applied at
.875 probability (doubling the average number of
mutations), and nonterminal selection (i.e. building block
mutation) is halved, which should lead to larger and
expectedly better networks on average.

For comparison we also applied GP to the symbolic
regression task. We employed GPLab (Silva & Almeida,
2003a) to evolve 100 trees for 200 generations. Permitted

terminals are {+,-,x,0,1}, crossover/mutation probabilities
are fixed at half/half, random (sub-)tree maximum depth
is 3, all parents are selected for reproductions, survival is
determined by half-elitist selection, tree size limits are
automatically adjusted as described by Silva and Almeida
(2003b), and the MSE is again used as the performance
measure. This setup is probably not optimal, but matches
the evolutionary mechanisms implemented so far in our
system.

4.1.2 Results & Discussion
30 runs were carried out for each experiment. Fig. 3
displays the first 100 generations; final generation
statistics are reported in Table 1. Since our system
operates on the larger domain of graphs rather than trees,
it is unsurprising that convergence is generally slower
than with GP. Individual runs for the binomial-3
regression are shown in Fig. 4, showing a far higher
variation between runs for our system.

(Quartic) (Binomial-3)

M
S

E

Size
0 5 10 15 20 25

0

2

4

6

8

10

12
Default
Boosted

(Binomial-3 Pareto front)

0 10 20 30 40 50 60 70 80 90 100
10

-2

10
-1

10
0

10
1

Default
Boosted
GPLab

M
S

E

Generation
0 10 20 30 40 50 60 70 80 90 100

10
-2

10
-1

10
0

10
1

Default
Boosted
GPLab

M
S

E

Generation

0 10 20 30 40 50 60 70 80 90 100
10

0

10
1

10
2

Default
Boosted
GPLab

S
iz

e

Generation

S
iz

e

0 10 20 30 40 50 60 70 80 90 100
10

0

10
1

10
2

Default
Boosted
GPLab

Generation

Quartic
Min Mean Max Std Min Mean Max Std Min Mean Max Std

Size of Best
Network

3 3.07 5 0.37 3 5.87 37 7.86 11 15.33 31 4.37

Generation of
Earliest Hit

21 59.10 159 29.38 3 33.13 109 25.77 12 20.23 30 4.10

Binomial-3
Min Mean Max Std Min Mean Max Std Min Mean Max Std

Size of Best
Network

4 5.23 7 0.97 4 10.37 122 21.35 13 21.13 29 4.10

Generation of
Earliest Hit

25 58.10 157 31.12 10 64.13 125 31.62 12 30.27 59 10.59

Default Boosted GPLab

Default Boosted GPLab

Figure 3: Mean error and size (number of terminals) of lowest error solution at each generation (up to 100)
over all runs of the quartic and binomial regression problems, for GP and two configurations of our system.
The graph on the right shows the mean pareto front for the final generation of all runs on the binomial
regression problem.

Table 1: Final generation statistics for all runs. Earliest hit is the first occurrence of a network with zero error.
All runs achieved at least one hit in 200 generations, so the minimum error is always zero and therefore not
shown here.

The boosted parameter set outclasses the default set and
still maintains a complete pareto-frontier (see Fig. 3),
although it also produces some exceedinly large
networks. Note that the solutions created by our system
are much smaller than those obtained via GP – a benefit
of operating in the graph domain. Fig. 5 and Fig. 6
provide graphical representations of a graph grammar and
several solution networks from arbitrarily chosen
evolutionary runs.

4.2 Neural Network Design
Although artificial neural networks are often associated
with their biological counterparts, it is arguably not this,
but the existence of effective learning algorithms, such as
Hebb’s rule and BP, which make neural networks the
perhaps best-known class of automata networks.
However, weight learning is highly sensitive to topology,
with over- and underfitting perhaps the most obvious
concern. A graph-optimising system such as ours has
evident use here, and we shall apply it to BP-trained
neural networks in particular.

Our system is fundamentally designed towards evolving
any graphs, including cyclic graphs, but BP-trained
neural networks are typically not cyclic, since BP cannot
adapt the weights of recurrent inputs. Elman networks
and other BP-trained recurrent networks ignore recurrent
inputs for training purposes, and the resulting error is
usually manageable, since the recurrent inputs are few
and specific in nature. Within our framework, cyclic
relationships may occur anywhere and will not be easily
discernable.

If cycles are detrimental to weight training, then the
evolutionary selection process would eliminate cyclic
networks. Since more than half of all possible graphs are
recurrent, this necessarily comes at a cost to the overall
evolutionary efficiency, as we continue to dissipate
resources on exploring further cyclic solutions. However,

0 10 20 30 40 50 60 70 80 90 100
10

-2

10
-1

10
0

10
1

M
S

E

Generation

(Quartic/Default)

0 10 20 30 40 50 60 70 80 90 100
10

-2

10
-1

10
0

10
1

M
S

E

Generation

(Binomial-3/Default)

M
SE

Generation
0 10 20 30 40 50 60 70 80 90 100

10
-2

10
-1

10
0

10
1 (Quartic/Boosted)

0 10 20 30 40 50 60 70 80 90 100
10

-2

10
-1

10
0

10
1

M
S

E

Generation

(Binomial-3/Boosted)

0 10 20 30 40 50 60 70 80 90 100
10

-2

10
-1

10
0

10
1

M
S

E

Generation

(Quartic/GPLab)

0 10 20 30 40 50 60 70 80 90 100
10

-2

10
-1

10
0

10
1

M
S

E

Generation

(Binomial-3/GPLab)

Figure 4: Minimum error at each generation for individual runs for the quartic and binomial regression
problems, for GP and two configurations of our system.

4

2

2

5

1

1

N
32224 4

x N
32223

1

1

N
32168 4

x N
32224

4

2

+
1

3

N
32223 3

N
32167

3

2

N
32167 4

x
4

2

Figure 5: Cellular graph grammar of a randomly
chosen solution for the binomial-3 regression. X and
+ are times and plus function terminals. The derived
network is depicted in Figure 6.

the mere possibility that cycles may be present in a
network poses a challenge for simulating this network, as
the classical method of instantaneously evaluating the
feedforward and backward passes becomes intractable.
Instead, a multi-pass approach is required, in line with the
simulation model discussed in section 3.4.2. In Table 2
we provide a comparison of this multi-pass approach
against the instantaneous approach. The former approach
appears less stable; the likely reason is that the error
signals and the input signals do not always match up
when the input pattern changes.

We train each network for one epoch each generation (a
few passes for each pattern) and maintain the changes
into the next generation. This Lamarckian style of
learning is known to be highly effective strategy,
particularly on problems like this, which benefit greatly
from gradient descent (Whitley et al., 1994). We will use
the standard backpropagation algorithm, mainly because
of its simplicity, since implementing heuristic speedups
involves additional parameters, and we are still uncertain
about how these should respond to mutations of the
network topology.

4.2.1 Experimental Procedure
We tested the system on the objective of evolving the
topology of a neural network that can classify the well-
known Fisher Iris dataset (Fisher, 1936). Finding a
multilayer architecture is essential for good performance

on this task, although much of the initial error can also be
overcome with simpler solutions. Thus, we expect more
complex architectures to arise as we move down the error
slope.

A population of 50 networks is evolved for 200
generations on 75 patterns from the Iris set. Patterns are
presented in random order to each network (neuron states
are not reset), with each network being simulated for 10
cycles before an MSE is computed. Terminals are log-
sigmoid neurons that access all available inputs within
their scope, and multiple terminals per production are
allowed. Other parameters match the default
configuration of experiment 4.1. Standard
backpropagation is applied with a learning rate of 0.1.
Weights are initialized randomly within the range [-1,1],
and we employed two models of assigning weights, either
as network weights (each network has its own set of
weights) or shared weights (weights are properties of the
cellular productions and can hence be used/modified by
several networks simultaneously).

For comparison, we also trained a user-defined 2-layer
neural network with 2 hidden neurons and 3 output
neurons, and a user-defined 3-neuron single-layer
network, using multipass training for 200 epochs and
alternatively, single pass training for 2000 epochs. All
training and evolution runs were repeated 30 times.

4.2.2 Results & Discussion
Results for first 100 generations are plotted in Fig. 7;
Table 2 provides final generation statistics. The user-
defined networks converge quickly to their best possible
error (limited by the relatively high learning rate), with
the single-layer network performing expectedly worse.
Our system performs only marginally worse than the
user-defined multi-layer network, but takes a while to
converge.

Employing shared weights leads to lower errors than
otherwise, which is surprising, as one would expect unfit
networks to ‘harm’ the weights of fit networks – instead,
the weight sharing appears to stabilize the evolutionary
development. Even so, individual networks oscillate
noticeably. The instability of the backpropagation,
particularly if cyclic links are present, likely conflicts
with the strict evolutionary selection process – occasional
lapses in performance may be penalized
disproportionately. The fitness of a learning network (or
any automata network with an indeterminate error)
should perhaps not be derived entirely from its present
error; a review of network performance over several
generations may be necessary as the basis for a proper
fitness assessment.

The high variability is also a likely cause for so many
large solutions surviving in the population. Compact
solutions are found, but have to compete with many other
solutions. In general, the total connectivity of neural
terminals will produce a bias towards highly connected
architectures. It is not yet clear how to best accommodate
n-ary terminals (where n >> 2) within our system, but we
are confident that significant improvements can be made.

+

1

+

x

xx

xx

y

x

x

x

+
+

+
++ +

+
1

1
1

1
1

x
x x

x

x

x
x

y

x x

x
x+

x

y

x

x

x

+

x

y

x

x

(Quartic)

(Binomial-3)

Figure 6: Solution networks for the quartic and
binomial-3 regression problems; on the left, solutions
discovered by our system; on the right, solutions
discovered by GPLab. Note that our quartic solution
is recurrent and generates the quartic function on the
10th iteration.

5 Conclusion
In this paper we presented a system for encoding and
evolving automata networks as a special class of
hypergraph grammars. The efficacy of this system was
demonstrated on the problems of symbolic regression and
the design of neural network architectures. A high degree
of variability between runs was also observed, however.
This can be partially attributed to the discrete nature of
the solution space, but also to the premature convergence
of some populations. This state is particularly difficult to
overcome within our system, as optimal solutions can
only be created if the correct building blocks are present.
Establishing building block diversity, and, by extension,
network diversity, must thus be regarded a prime concern.

Multi-objective selection appears to offer little benefit in
this regard. In fact, over the total run, more search
samples are likely to be allocated to small networks rather
than large networks (and their building blocks). It is
noteworthy that the system produces better solutions with
lesser multi-objective constraints and higher mutation
rates. Such a parameter choice would be expected to
generate bloated, high-dimensional solutions, but, as
experiment 4.1 indicates, fragments of these solutions are
evidently useful and ultimately precipitate out, without
much visible overhead in the final grammars.

The solutions generated by our system, especially for the
symbolic regression problem, reflect the potential of

operating in the graph domain, by drawing on the benefits
of reuse and recurrency. Yet both the regression as well
as neural network design required only feed-forward
topologies as solutions. The system can construct any
graph, including feed-forward/bipartite ones, which was
principally shown with this paper, but its forte should be
evolving cyclic topologies. In order to construct useful
recurrent networks, however, concepts of signal timing,
e.g. delay lines, must be accommodated. A future paper
shall report on progress in this area.

6 References
Abbass, H. A. (2003): Speeding up back-propagation

using multiobjective evolutionary algorithms. Neural
Computation 15(11):2705-2726.

Angeline, P. J., Saunders, G. M., and Pollack, J. B.
(1994): An evolutionary algorithm that constructs
recurrent neural networks. IEEE Transactions on
Neural Networks 5(1):54-65.

Bäck, T. (1996): Evolutionary algorithms in theory and
practice. New York, Oxford University Press.

Bleuler, S., Braek, M., Thiele, L., and Zitzler, E. (2001):
Multiobjective genetic programming: reducing bloat
using SPEA2. Proceedings of the 2001 IEEE Congress
on Evolutionary Computation 2001 (CEC 2001), Seoul,
Korea, 1:536-543.

0 10 20 30 40 50 60 70 80 90 100

0.1

0.5

0.02

M
S

E

Epoch (Generation)
0 10 20 30 40 50 60 70 80 90 100

0.1

0.5

0.02

M
S

E

Epoch (Generation)

M
S

E

Epoch (Generation)
0 10 20 30 40 50 60 70 80 90 100

0.02

0.1

0.5
Shared Weights
Network Weights
3-Predefined
2,3-Predefined

(2,3-Predefined) (Shared Weights)

Predefined NNs
Min Mean Max Std Min Mean Max Std Min Mean Max Std

Simulation MSE 0.0618 0.0630 0.0696 0.0016 0.0172 0.0213 0.0373 0.0046 0.0156 0.0157 0.0158 0.0001

Validation MSE 0.0605 0.0633 0.0728 0.0029 0.0250 0.0289 0.0394 0.0038 0.0236 0.0245 0.0259 0.0006

Network Size

Evolved NNs
Min Mean Max Std Min Mean Max Std

Simulation MSE 0.0171 0.0225 0.0296 0.0030 0.0177 0.0254 0.0505 0.0069

Validation MSE 0.0180 0.0245 0.0449 0.0048 0.0224 0.0278 0.0452 0.0062

Network Size 8 24.53 82 16.03 17 56.40 175 45.35

3 Neurons / 1 Layer 2,3-Neurons / 2 Layers 2,3-Neurons / 2 Layers (Instant)

Shared Weights Network Weights

12 17 17

Figure 7: The graph on the left shows the mean error of the best (lowest error) solution at each generation (up
to 100) over all runs of the IRIS neural network design problem. The graphs on the right show all individual
runs for the multilayer predefined network and the shared network evolution.

Table 2: Network statistics after 200 generations. Networks are subsequently tested on a separate 75 sample
validation set, the results of which are also listed here. (Instant) signifies conventional, single-pass
backpropagation; all other networks were trained by the multi-pass approach.

Boers, E.J.W. and Kuiper, H. (1992): Biological
metaphors and the design of modular artificial neural
networks. Master’s Thesis. Leiden University, The
Netherlands.

Cun, Y., Denker, J., and Solla, S. (1990): Optimal brain
damage. In Advances in neural information processing
systems, vol. 2. 598-605. TOURETZKY, D.S. (ed).
Morgan Kauffmann.

Daida, J. M., Bertram, R. R., Stanhope, S. A., Khoo, J.
C., Chaudhary, S. A., Chaudhri, O. A., and Polito II, J.
A. (2001): What makes a problem GP-hard? analysis of
a tunably difficult problem in genetic programming.
Genetic Programming and Evolvable Machines
2(2):165-191.

Darwin, C. (1859): On the origin of species by means of
natural selection. London, Murray.

De Jong, E.D. and Pollack, J.B. (2001): Utilizing bias to
evolve recurrent neural networks. Proceedings of the
IJCNN, Washington, USA, 4:2667-2672.

Deb, K. (2001): Multi-objective optimization using
evolutionary algorithms. Chichester, Wiley.

Fahlman, S. and Lebière, C. (1990): The cascade-
correlation learning architecture. In Advances in neural
information processing systems, vol. 2. 524-532.
TOURETZKY, D.S. (ed). Morgan-Kauffmann.

Fisher, R. A. (1936): The use of multiple measurements
in taxonomic problems. Annual Eugenics 7:179-188.

Futuyma, D.J. (1998): Evolutionary biology. Sunderland,
MA, Sinauer Associates, Inc.

Goles, E., and Martinez, S. (1990): Neural and automata
networks: dynamical behavior and applications.
Dordrecht, Germany, Kluwer Academic Publishers.

Gruau, F. (1994): Neural network synthesis using cellular
encoding and the genetic algorithm. Ph.D. thesis.
l'Ecole Normale Supérieure de Lyon, France.

Habel, A. (1992): Hyperedge replacement: grammars
and languages. Berlin, Springer-Verlag.

Halder, G., Callaerts, P., and Gehring, W. (1995):
Induction of ectopic eyes by targeted expression of the
eyeless gene in Drosophila. Science 267:1788-1792.

Holland, J. (1992): Adaptation in natural and artificial
systems: an introductory analysis with applications to
biology, control, and artificial intelligence. Cambridge,
MIT Press.

Igel, C. and Toussaint, M (2003): Recent results on
no-free-lunch theorems for optimization.
arXiv:cs.NE/0303032

Kitano, H. (1990): Designing neural networks using
genetic algorithms with graph generation systems.
Complex Systems 4(4):461-476.

Koza, J.R. (1992): Genetic programming: on the
programming of computers by means of natural
selection. Cambridge, The MIT Press.

Lindenmayer, A. (1968): Mathematical models for
cellular interaction in development, parts I and II.
Journal of Theoretical Biology 18:280-315.

Luerssen, M. and Powers, D. (2003): On the artificial
evolution of neural graph grammars. Proceedings of
the 4th International Conference on Cognitive science
(ICCS/ASCS-2003), Sydney, Australia, 369-377.

Luke, S. and Spector, L. (1996): Evolving graphs and
networks with edge encoding: preliminary report. Late
Breaking Papers at the Genetic Programming 1996
Conference, Stanford University, USA, 117-124.

Miller, J.F. and Thomson, P. (2000): Cartesian genetic
programming. Proceedings of the Third European
Conference on Genetic Programming (EuroGP2000),
Edinburgh, UK, LNCS 1802:121-132.

Miller, J.F. and Thomson, P. (2003): A developmental
method for growing graphs and circuits. Fifth
International Conference on Evolvable Systems: From
Biology to Hardware, LNCS 2606:93-104.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J.
(1986): Learning representation by back-propagating
errors. Nature 323:533-536.

Shan, Y., McKay, R. I., Baxter, R., Abbass, H. A.,
Essam, D. L., and Nguyen, H. X. (2004): Grammar
model-based program evolution. Proceedings of the
2004 IEEE Congress on Evolutionary Computation
(CEC 2004), Portland, USA, 1:478-485.

Silva, S. and Almeida, J. (2003): Dynamic maximum tree
depth - a simple technique for avoiding bloat in tree-
based GP. Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-
2003), Chicago, USA, LNCS 2724:1776-1787.

Silva, S. and Almeida, J. (2003): GPLAB - a genetic
programming toolbox for MATLAB. Proceedings of
the nordic MATLAB conference (NMC-2003),
Copenhagen, Denmark, 273-278.

Toussaint, M. (2003): The evolution of genetic
representations and modular neural adaptation. Ph.D
thesis. Institut für Neuroinformatik, Ruhr-Universität
Bochum.

Wagner, G. P. and Altenberg, L. (1996): Complex
adaptations and the evolution of evolvability. Evolution
50(3):967-976.

Whigham, P. A. (1995): Grammatically-based genetic
programming. Proceedings of the Workshop on
Genetic Programming: From Theory to Real-World
Applications, Tahoe City, USA, 33-41.

Whitley, D., Gordon, V., and Mathias, K. (1994):
Lamarckian evolution, the Baldwin effect and function
optimization. Parallel problem solving from nature
(PPSN 3), Jerusalem, Israel, LNCS 866:6-15.

Yao, X. (1999): Evolving artificial neural networks.
Proceedings of the IEEE 87:1423-1447.

