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Abstract 
The global dynamics of automata networks (such as 
neural networks) are a function of their topology and the 
choice of automata used. Evolutionary methods can be 
applied to the optimisation of these parameters, but their 
computational cost is prohibitive unless they operate on a 
compact representation. Graph grammars provide such a 
representation by allowing network regularities to be 
efficiently captured and reused. We present a system for 
encoding and evolving automata networks as collective 
hypergraph grammars, and demonstrate its efficacy on the 
classical problems of symbolic regression and the design 
of neural network architectures. 

Keywords: Genetic algorithms, genetic programming, 
graph grammars, neural networks 

1 Introduction 
Backpropagation (BP) (Rumelhart, Hinton & Williams, 
1986) has become the quasi-standard approach for 
optimising the weights of a multilayer neural network. 
However, nothing remotely as effective exists for 
optimising the network topology. Heuristic local search 
algorithms such as Cascade Correlation (Fahlman & 
Lebière 1990) and Optimal Brain Damage (Cun, Denker, 
& Solla 1990) can only explore a subset of topologies and 
are intrinsically limited by the lack of gradient 
information for the discrete topology space (Angeline et 
al., 1994). 

Evolutionary algorithms are a well-established search 
method (Bäck, 1996) and have found widespread 
application towards optimising virtually every aspect of 
neural networks, including their topology (Yao, 1999). 
Determining the best neural network topology is 
fundamentally about searching the space of feasible 
graphs. Graph evolution itself has been an rare topic of 
research, however. We here present a powerful new 
means of representing and evolving graphs towards the 
purpose of topologically optimising neural networks and 
automata networks in general.  
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2 Fundamental Background 

2.1 Automata Networks 
An automata network (Goles & Martinez, 1990) is a 
system (C, A, Sn, N, L) where C is a set of cells, A is an 
alphabet of states, Sn : C → A is the state at time n, where 
n = 0, 1, 2, …, M. ∀  c ∈  C: N(c) is the neighbourhood of 
c, where N : C → P(C) is the neighbourhood system and 
P(C) the power-set of C. S is updated according to            
L : C → D where D is a set of local dynamic rules       
δN(c): S(c)n-1 ! S(c)n. The global dynamic rule is formed 
by ∆(S) = ∪ c∈ C (δN(c)(c)) and defines the behaviour of the 
system. Neural networks comprise a specific instance of 
automata networks. The optimisation of automata 
networks towards a desirable ∆(S) hence also includes 
neural networks, with the added benefit of generality. 

2.2 Evolutionary Search 
According to the No Free Lunch theorem for optimisation 
all search strategies – without further assumptions – are 
equally effective on average over all problem domains 
(Igel & Toussaint, 2003). Although this may initially 
discourage from conceiving of a general search strategy, 
most problems of interest are not arbitrary, but exhibit 
some sort of regularity. By drawing on previously 
discovered solutions, we should thus be able to make an 
informed decision on where to look next. This is known 
as generic heuristic search (Toussaint, 2003), and 
evolutionary algorithms constitute a general instance 
thereof. 

Evolutionary algorithms all share the notion of increasing 
the overall fitness of a population of diverse solutions by 
replacing poor solutions with better ones (Bäck, 1996). A 
population of offspring solutions is generated from the 
existing population by means of applying mutation and/or 
recombination. The best solutions are then selected to 
form a new population. The inspiration for this is 
Darwin’s theory of evolution, which explains the 
adaptation of species by the principle of natural selection, 
favouring those species that are fittest, i.e. most adapted 
to their environment, and consequently most successful at 
reproducing (Darwin, 1859).  

The efficacy of evolution at optimising networks depends 
on its ability to handle the Curse of Dimensionality - the 
exponential growth of possible network topologies with 
network size. Unless evolution learns from previous 
explorations, this quickly becomes intractable. In view of 



the simplicity of the Darwinian principle, the capacity for 
complex functional adaptation in biological systems is 
remarkable. However, the likely source of this is not a 
sophisticated adaptation mechanism, but a sophisticated 
functional representation upon which simple mechanisms 
operate (Toussaint, 2003). 

2.3 Genetic Algorithms 
Genetics has extended evolutionary theory by the concept 
of heredity, with genes acting as transfer units. The genes 
of an organism constitute its genotype, or genome, which 
is encoded into several chromosomes of DNA. Natural 
selection applies to the phenotype, which is the collection 
of the individual’s selection-relevant features. Genetic 
algorithms (GAs) (Holland, 1992) distinguish themselves 
from other evolutionary algorithms by acknowledging the 
genotype-phenotype distinction. A common functional 
representation is the direct encoding scheme, which 
assumes a one-to-one correspondence between the genes 
and the phenotypical traits subjected to the selection 
process. The simplicity of such a mapping might appear 
desirable, but there are notable drawbacks to it. Genotype 
size becomes directly proportional to phenotype size, 
elevating the prospect of a combinatorial explosion.  

It therefore becomes critical to the evolutionary search 
process that an effective exploration strategy is employed, 
but this is principally dependent on the choice of 
mutation operators and the genetic representation upon 
which they operate. Thus, an exploration strategy that 
adapts to the problem appears to necessitate the 
adaptability of either the mutation operators or the nature 
of the genotype-phenotype mapping itself (Wagner & 
Altenberg, 1996), but this is not so. We can also achieve 
an adaptable exploration by applying neutral variations to 
the genotype, which affect phenotype evolution by 
influencing mutation probabilities and thereby encoding 
distinct exploration strategies. The drawback of a direct 
encoding scheme is that it allows for no neutrality beyond 
what is already intrinsic to the phenotype space. 

2.4 Grammar-based Coding 
Grammar-based encoding schemes use productions for 
genes, the expression of which forms the phenotype. The 
indirectness of this encoding allows for a many-to-one 
mapping with a corresponding richness in possible 
genotypic representations. Moreover, changes to 
individual productions can affect whole groups of 
phenotypic variables, a property known as pleiotropy and 
also observed within biology. For example, the mutation 
of a single control gene called eyeless in the early 
ontogenesis of a Drosophila Melanogaster results in the 
growth of additional, functionally complete eyes on its 
wings, legs and antennae (Halder et al., 1995).  

Kitano (1990) and Boers and Kuiper (1992) are some of 
the earliest examples of grammar-based encodings of 
neural networks. Both use Lindenmayer-systems (L-
systems), which were introduced by Lindenmayer (1968) 
to describe the morphogenesis of linear and branching 
structures in plants. L-systems are parallel string 
rewriting systems that rewrite a starting string into a new 

string by applying a set of production rules to all symbols 
of the string in parallel. A graph is obtained from this 
string by interpreting the terminal symbols as graph 
transformations. 

Following these earlier approaches, Gruau (1994) 
introduced Cellular Encoding, which represents a graph 
as a tree of operators. During graph rewriting, each node 
of the graph reads the tree at a different position and is 
duplicated, reconnected or otherwise modified depending 
on the operator that is read. The tree is evolved by genetic 
programming (GP) (Koza, 1992). GP is usually applied 
towards program evolution and provides for 
recombination of program trees by branch-swapping, 
which, unlike most other genetic algorithms, allows for 
solutions of different sizes and shapes. GP is a powerful 
and proven technique, and Cellular Encoding, as a tree-
based graph encoding, directly benefits from this.  

The sets of allowed graph transformations play a key role 
in each of the methods discussed so far. Any chosen set 
imposes a bias towards those graphs that are simplest, or 
at all possible, to describe with this set. Kitano’s 
Grammar Encoding Method (1990), for instance, is 
inherently restricted to networks with nodes of a single 
type only. Inevitably, there has been some disagreement 
on what is the best set of transformations for a given 
problem. Luke and Spector (1996) have proposed cellular 
encoding by edge operators rather than node operators, 
and de Jong and Pollack (2001) use both types in their 
system. Since the choice of graph transformations is so 
contentious, a system for directly evolving a graph 
grammar, and hence the transformations that generate the 
desired graphs, must necessarily emerge as the next step. 

3 The Cellular Production Framework 

3.1 Hyperedge-Replacement Grammars 
A multitude of graph rewriting systems have been 
proposed in the past, and a prominent subset of these are 
the (hyper-)edge replacement systems (Habel, 1992). 
Edges in a graph normally have arity two, that is, they 
connect two vertices. A hyperedge connects several 
vertices, and a graph with hyperedges is hence called a 
hypergraph. Formally, a hypergraph over a fixed set of 
labels C is a system (V, E, s, t, lE) where V is a finite set 
of nodes, E is a finite set of hyperedges, s : E ! V* and    
t : E ! V* are two mappings assigned a sequence of 
sources s(e) and a sequence of targets t(e) to each e ∈  E, 
and lE : E ! C is a mapping labelling each hyperedge. If 
we wish to attach a hypergraph to another graph, we must 
define a sequence of begin nodes (corresponding to the 
source nodes) and a sequence of end nodes 
(corresponding to target nodes). A multi-pointed 
hypergraph over C is a system H = (V, E, s, t, lE, begin, 
end) where (V, E, s, t, lE) is a hypergraph over C and 
begin, end ∈  V*.  

Whereas in a graph the vertices are often regarded as 
objects and edges as relationships between these objects, 
in a hypergraph it is quite intuitive to reverse these roles. 
Hyperedges can thus be interpreted as incomplete 
segments of the graph that are connected by vertices. The 



graph can grow by replacing labelled hyperedges with 
multi-pointed hypergraphs according to a set of 
hypergraph productions. Let N ⊆  C be the set of 
nonterminals, T ⊆  C be a set of terminals and Hc be the 
set of all multi-pointed hypergraphs. A hypergraph 
production is an ordered pair p = (A, R) with A ∈  N called 
the left-hand side (LHS) of p and R ∈  Hc is called the 
right-hand side (RHS) of p. A hyperedge-replacement 
grammar is a system HRG = (N,T,P,Z) where P is a finite 
set of hypergraph productions over N and Z ∈  Hc is the 
axiom.  

3.2 Grammar-Guided Sampling 
A graph generated by the hyperedge replacement system 
becomes an automata network by adding the appropriate 
semantics to the terminals – for a neural network these 
become threshold automata, for example. Evolving a fit 
network hence means evolving a set of hypergraph 
productions that generate this network. Unlike what is 
assumed in the (L-system) production evolution of Kitano 
(1990) and Boers and Kuiper (1992), our model does not 
require each network to maintain its own production set 
(Luerssen & Powers, 2003). Only one instance of a 
production has to exist, even if it is involved in the 
derivation of different networks. The production set 
shared by all networks is analogous to the gene pool of 
biological organisms. It is not the genes that an organism 
holds that define it as much as the genes that it expresses. 
Just as an organism is a sample of the biological gene 
pool, the derived networks are samples of our grammar. 

Generating solutions from a grammar has been previously 
researched within the context of GP (Whigham, 1995). 
The process of modifying such a grammar to produce the 
best possible solutions is perhaps most refined in 
Grammar Model-based Program Evolution (GMPE) 
(Shan et al., 2004).  GMPE applies a stochastic hill-
climbing search to learn a stochastic context-free 
grammar from the best solutions in the existing 
population. A fraction of the next generation is then 
sampled using this grammar, and the procedure repeated; 
novelty arises from adding random solutions to the 
population. In contrast, our approach is based on a fully 
deterministic grammar with unique nonterminals, a 
constraint that allows for only a fixed number of 
derivations exactly matching the intended population of 
networks. Productions are not learned from any existing 
population, but modified directly, as elucidated in section 
3.4.3. In fact, other than for caching purposes, no network 
population has to be maintained from generation to 
generation, as each network (and no other) can simply be 
derived from the grammar. 

3.3 Cellular Hypergraph Productions 
The RHS of the productions constituting our system is a 
special form of multi-pointed hypergraph Hs = (V, E, lV, 
lE, begin, end) without any source and target mappings 
but with a vertex labelling (including begin and end 
nodes) lV : V ! C. The hypergraph production is 
redefined as ps = (A, Rs, s, t), where s and t are a sequence 
of sources and targets assigned to the edge labelled A, and 
Rs is an instance of Hs. The production, rather than the 

hypergraph, now defines the attachment of the hyperedge 
– indeed the hypergraph is incomplete without the 
production. We believe this simplifies hypergraph 
mutation, since typing mismatches are now avoided when 
replacing one hyperedge for another, and a high degree of 
neutrality is still maintained. For convenience, ps will 
from hereon be referred to as a cellular production. A 
graphical representation is provided in Fig. 1. 

Cellular productions individually describe only parts of a 
hypergraph production; thus, more are typically needed to 
construct the same graph. Also worth noting is a 
resemblance to the Cartesian cells of Cartesian Genetic 
Programming (CGP) (Miller & Thomson, 2000). CGP is 
a variant of GP that constructs graphs from nodes with 
labelled edges. Unlike cellular productions, Cartesian 
cells are neither transformative nor generative. However, 
recent, promising attempts have been made at applying 
CGP to generate graph growing programs (Miller & 
Thomson, 2003). 

3.3.1 Cellular Scope 
The possible sources and targets of a hyperedge depend 
on the enclosing hypergraph. Since each node of the 
hypergraph is labelled, source and target mappings can be 
constituted by sequences of labels of the nodes available 
for attachment. This is limited by scope in order to 
minimize node searching and also to facilitate structural 
modularity. The permitted sources of a hyperedge are: 

1) the begin nodes of its enclosing hypergraph 

2) the terminal nodes of its enclosing hypergraph 

3) the end nodes of every replaced hyperedge 
(including itself) within its enclosing hypergraph 

The allowed targets of a hyperedge are: 

1) the end nodes of its enclosing hypergraph 

2) the terminal nodes of its enclosing hypergraph 

3) the begin nodes of every replaced hyperedge 
(including itself) within its enclosing hypergraph 
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Figure 1: Diagrammatic representation of a cellular 
production. Nonterminal N on the LHS is replaced by 
the RHS hypergraph, where T is a terminal, N is a 
nonterminal, s and t are source and target labels, b and 
e begin and end node labels, and v is the terminal 
label. 



Significantly, item 3 allows hyperedges with matching 
source/end or target/begin labels to link up even in the 
absence of a vertex with that label in the enclosing 
hypergraph. Edges incident on terminals, however, are 
defined only partially by the cellular production model. 
Edges between the terminal and the Hs end nodes are 
resolved by the vertex and end-node labelling, but inputs 
to the terminal must be established by the terminal itself. 
In our subsequent experiments the implemented automata 
use by default all inputs within the relevant scope. 

3.4 Evolving Automata Networks 
The set of cellular productions defines and is defined by 
the graphs and, ultimately, automata networks that can be 
derived from it. Our goal is to find automata networks 
that perform well on the objective function, which means 
finding the right cellular production set. The evolutionary 
method we apply for this purpose can be summarized as 
follows: Automata networks are derived from the starting 
productions within the existing production set and tested 
on the objective function. The poorest performing 
networks are eliminated, as are all the productions that 
hence become superfluous. New variants of existing 
productions are then added to the production set to allow 
for the derivation of a fixed number of new networks. 
Within this framework, evolution is thus interpretable as 
a repeated growing and pruning of an interlinked 
production set. 

3.4.1 Deriving Automata Networks 
Graph rewriting is performed in parallel. Although for a 
context-free grammar this has no effect on the shape of 
the generated graph, it allows us to express the graph 
rewriting as a distributed developmental process. For this 
purpose, let us establish a developmental unit as a system 
U = (P, Hs, c, UA), where P is the set of all productions, 
Hs is an existing hypergraph, c is the label of a hyperedge 
to be replaced, and UA is an associated ancestor U (can be 
empty). Starting from a single U1, a graph can be 
generated as follows. U1 retrieves a production p 
matching label c from set P and replaces the occurrence 
of hyperedge c in Hs with the RHS of the production p. 
For each occurrence of a hyperedge E in the inserted 
subhypergraph a new U2=(P, Hs, C(E), U1) is produced 
and the replacement process repeated in parallel for each 
new Un, until either no more hyperedges require 
replacement or the number of previous instances of a 
production in the replacement path exceeds a parameter 
M ∈  ù + that is co-evolved with each production. Thus, 
each production’s recursion depth is limited individually 
rather than globally. 

From the graph rewriting process we obtain a hypergraph 
Hs, representing the developed network, as well as a set 
of U that are interlinked into a (development) tree. This U 
tree can be discarded if Hs is complete; however, the 
initial Hs1 of U1 may change (see below), in which case 
the final Hsn is incomplete or false. The U tree can be 
used to modify Hsn according to the changes in Hs1, 
instead of having to fully re-grow Hsn. 

3.4.2 Evaluating Automata Networks 
Once an automata network has been expressed, it must be 
evaluated. Recurrent connectivity entails that the 
evaluation cannot occur layer by layer as with a feed-
forward topology. Every automaton must be evaluated in 
parallel for several cycles until either the outputs have 
stabilized or a user-defined cycle limit is reached. We 
achieve parallelism by splitting the automaton update into 
two phases. First, each automaton updates its hidden state 
based on the visible state of all the neurons to which it is 
connected. Subsequently, each automaton turns its hidden 
state into a visible state and continues with step one.  

If the objective function is a typical pattern/label-
classification task, the network needs to be linked to the 
appropriate sources and targets. For each possible source 
and target defined by a particular pattern/label pair (or 
time series thereof), an automaton is spawned whose state 
matches that of the source or target for each cycle. A set 
of automata representing a pattern/label pair constitutes 
an initial Hs1, to which every network in the evolved 
population will link according to the source and target 
mappings of their respective starting production. States 
retrieved by the target automata after several update 
cycles automata are compared to the expected outputs and 
an error for the network may thus be computed. Once all 
networks are evaluated on this pattern/label pair, they are 
connected to another Hs1 matching the next pair and the 
evaluation continues. Unless otherwise specified, the 
order in which the pattern/label pairs are presented is 
random.  

3.4.3 Mutating Automata Networks 
New productions, and hence new automata networks, are 
obtained by mutating existing productions. The mutation 
operators comprise the addition, deletion and replacement 
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Figure 2: Two cellular production labels N102 and N103
and networks derived from these. N102 expresses a 
terminal and N103 a nonterminal (N102). Edges are 
defined by matching labels, with the exception of 
terminal inputs, which are implicitly linked to all 
visible begin nodes. 



of terminal types and labels, non-terminals types, source 
labels, target labels, begin node labels, and end node 
labels of any cellular production. Mutations are the only 
means of change; no recombination (crossover) operator 
is modelled. The mutation of nonterminals already results 
in a recombination of networks, comparable to subtree-
swapping in GP. 

Mutations are applied during network derivation to one 
production at a time, with a finite chance that any 
expressed production is chosen for mutation and, if so, a 
finite chance that one of its nonterminals is chosen 
instead. A copy of the mutated production is created with 
a unique LHS, and then mutated with respect to its 
enclosing graph – this is particularly relevant for source 
and target mutations. The mutated production replaces the 
original production in all occurrences of the original 
production during derivation.  

Subsequent to evaluation, all the productions that have 
been expressing this mutated production are copied, and 
the copies modified so as to refer to the mutated instance, 
not the original. This is repeated for all the productions 
referring to the now modified productions, and so on, 
until the starting production has also been modified. This 
new starting production thus reflects the new, mutated 
network.  

3.4.4 Multi-objective Evolution 
Performance is not the only important property of the 
evolved network; size is another. We define network size 
as the sum of its nodes and edges. A trade-off between 
network performance and network size is to be expected, 
with larger networks performing better and smaller 
networks requiring less evaluation time and space. The 
presence of multiple such conflicting objectives in an 
optimisation problem means that typically there is no 
single best solution. An algorithm that returns a set of 
solutions is therefore preferable to an algorithm that 
returns only one solution based on some weighting of the 
objectives. This way, our system can evolve networks at 
each possible size, with the expert user ultimately 
selecting the most satisfying compromise. A similar 
multi-objective approach has earlier been applied to GP 
by Bleuer et al. (2001) and to neural networks by Abbass 
(2003). 

The majority of recently published multi-objective 
evolutionary algorithms (MOEAs) use fitness assignment 
based on Pareto-domination (Deb, 2001). A solution S1 is 
said to dominate another solution S2 if S1 is no worse than 
S2 in all objectives and better than S2 in at least one 
objective. Ideally, the MOEA produces the Pareto 
optimal set, the solutions not dominated by any other 
solutions in search space. Even though the MOEA takes 
multiple objectives into account simultaneously, it still 
must transform all of these objectives into one fitness 
measure, so that the EA can distinguish fit individuals 
from less fit ones. The transformation is typically made 
by assigning each solution a measure of its 
nondominatedness. 

If the number of networks is smaller than the number of 
different sizes being explored, i.e. the Pareto set is 

incomplete, then the MOEA should return a set of 
nondominated networks that are spread evenly along the 
Pareto boundary. Most MOEAs, ours included, apply 
some form of phenotypical niching to achieve this, which 
means that the spread is based on the objective function 
values and not on structural differences within the 
solutions themselves. Niching is used only as a secondary 
measure of fitness: If individual S1 is more nondominated 
than S2, S1 is preferred regardless of niching, whereas if 
S1 and S2 have the same degree of nondominatedness, the 
one residing in the most sparsely populated region of the 
search-space is preferred. We assess population density as 
simply the distance between a chosen solution and its 
nearest neighbour. 

In addition to the performance and size objectives, we 
optimize towards a third objective, that of ’age’. The idea 
is to provide a form of half-elitism within the multi-
objective framework, by imitating the trade-off between 
age and phenotypic fitness that is observed in nature. 
Newer solutions are given a temporary reprieve against 
domination by superior but older solutions, which allows 
genetic novelty to be temporarily retained. 

4 Experiments 

4.1 Symbolic Regression 
Symbolic regression is about inferring a functional 
mapping y = f(x) between a set of independent variables x 
and a dependent variable y. Regression by neural 
networks assumes an auxillary transfer function g (such 
as the sigmoid), so that f(x) = WO · g(WH), where WO are 
the weights from hidden to output layer, and WH are the 
weights from input to hidden layer. Since multi-layer 
neural networks of sufficient complexity can approximate 
any mapping, the problem of regression primarily 
becomes that of optimising weights within the context of 
a specific model. In contrast, symbolic regression is about 
generating answers directly in the symbolic language of 
mathematics (Koza, 1992). Symbolic regression is 
commonly used in theoretical studies of GP. From a set 
of pre-specified elementary functions GP can construct a 
mapping function f1(x) that best approximates the actual 
f(x). Our system applied to symbolic regression can 
generate graphs of these elementary functions. We thus 
expect not only to discover solutions otherwise obtainable 
by GP, but also solutions that constitute recurrence 
equations. 

4.1.1 Experimental Procedure 
We first addressed the problem of regressing the quartic 
polynomial f(x) = x4+x3+x2+x (Koza, 1992) and the 
binomial-3 polynomial f(x) = (x+1)3 (Daida et al., 2001). 
Fitness cases are 21 equidistant points generated by these 
functions over the interval of x = [-1,1]. Starting from a 
singular empty graph the system evolves a population of 
100 graphs for each of 200 generations. Each graph is 
composed solely of the binary functions {+, -, x}; any 
undefined arguments of these functions are automatically 
set to {0, 0, 1}, respectively. Labels are selected from a 
set of 10, and only one function is allowed per 
production. Networks are simulated for 10 time steps 



before an output is retrieved and the mean squared error 
(MSE) for each network is computed. Automata states are 
reset subsequent to each simulation.  

Two distinct parameter sets are tested: In the default set, 
operators for different graph mutations are applied at 
equal probabilities, and the probability of additional 
mutations and the probability of nonterminal selection are 
each set to half. In the “boosted” set, we bias the 
multiobjective criterion towards performance by 
automatically dominating the worst (highest error) 90% 
of the population. Addition operators are applied at 
double probability, additional mutations are applied at 
.875 probability (doubling the average number of 
mutations), and nonterminal selection (i.e. building block 
mutation) is halved, which should lead to larger and 
expectedly better networks on average. 

For comparison we also applied GP to the symbolic 
regression task. We employed GPLab (Silva & Almeida,  
2003a) to evolve 100 trees for 200 generations. Permitted 

terminals are {+,-,x,0,1}, crossover/mutation probabilities 
are fixed at half/half, random (sub-)tree maximum depth 
is 3, all parents are selected for reproductions, survival is 
determined by half-elitist selection, tree size limits are 
automatically adjusted as described by Silva and Almeida 
(2003b), and the MSE is again used as the performance 
measure. This setup is probably not optimal, but matches 
the evolutionary mechanisms implemented so far in our 
system. 

4.1.2 Results & Discussion 
30 runs were carried out for each experiment. Fig. 3 
displays the first 100 generations; final generation 
statistics are reported in Table 1. Since our system 
operates on the larger domain of graphs rather than trees, 
it is unsurprising that convergence is generally slower 
than with GP. Individual runs for the binomial-3 
regression are shown in Fig. 4, showing a far higher 
variation between runs for our system.  
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Figure 3: Mean error and size (number of terminals) of lowest error solution at each generation (up to 100) 
over all runs of the quartic and binomial regression problems, for GP and two configurations of our system. 
The graph on the right shows the mean pareto front for the final generation of all runs on the binomial 
regression problem. 

Table 1: Final generation statistics for all runs. Earliest hit is the first occurrence of a network with zero error. 
All runs achieved at least one hit in 200 generations, so the minimum error is always zero and therefore not 
shown here. 



The boosted parameter set outclasses the default set and 
still maintains a complete pareto-frontier (see Fig. 3), 
although it also produces some exceedinly large 
networks. Note that the solutions created by our system 
are much smaller than those obtained via GP – a benefit 
of operating in the graph domain. Fig. 5 and Fig. 6 
provide graphical representations of a graph grammar and 
several solution networks from arbitrarily chosen 
evolutionary runs.  

4.2 Neural Network Design 
Although artificial neural networks are often associated 
with their biological counterparts, it is arguably not this, 
but the existence of effective learning algorithms, such as 
Hebb’s rule and BP, which make neural networks the 
perhaps best-known class of automata networks. 
However, weight learning is highly sensitive to topology, 
with over- and underfitting perhaps the most obvious 
concern. A graph-optimising system such as ours has 
evident use here, and we shall apply it to BP-trained 
neural networks in particular.  

Our system is fundamentally designed towards evolving 
any graphs, including cyclic graphs, but BP-trained 
neural networks are typically not cyclic, since BP cannot 
adapt the weights of recurrent inputs. Elman networks 
and other BP-trained recurrent networks ignore recurrent 
inputs for training purposes, and the resulting error is 
usually manageable, since the recurrent inputs are few 
and specific in nature. Within our framework, cyclic 
relationships may occur anywhere and will not be easily 
discernable.  

If cycles are detrimental to weight training, then the 
evolutionary selection process would eliminate cyclic 
networks. Since more than half of all possible graphs are 
recurrent, this necessarily comes at a cost to the overall 
evolutionary efficiency, as we continue to dissipate 
resources on exploring further cyclic solutions. However, 
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Figure 4: Minimum error at each generation for individual runs for the quartic and binomial regression 
problems, for GP and two configurations of our system. 
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the mere possibility that cycles may be present in a 
network poses a challenge for simulating this network, as 
the classical method of instantaneously evaluating the 
feedforward and backward passes becomes intractable. 
Instead, a multi-pass approach is required, in line with the 
simulation model discussed in section 3.4.2. In Table 2 
we provide a comparison of this multi-pass approach 
against the instantaneous approach. The former approach 
appears less stable; the likely reason is that the error 
signals and the input signals do not always match up 
when the input pattern changes.  

We train each network for one epoch each generation (a 
few passes for each pattern) and maintain the changes 
into the next generation. This Lamarckian style of 
learning is known to be highly effective strategy, 
particularly on problems like this, which benefit greatly 
from gradient descent (Whitley et al., 1994). We will use 
the standard backpropagation algorithm, mainly because 
of its simplicity, since implementing heuristic speedups 
involves additional parameters, and we are still uncertain 
about how these should respond to mutations of the 
network topology. 

4.2.1 Experimental Procedure 
We tested the system on the objective of evolving the 
topology of a neural network that can classify the well-
known Fisher Iris dataset (Fisher, 1936). Finding a 
multilayer architecture is essential for good performance 

on this task, although much of the initial error can also be 
overcome with simpler solutions. Thus, we expect more 
complex architectures to arise as we move down the error 
slope. 

A population of 50 networks is evolved for 200 
generations on 75 patterns from the Iris set. Patterns are 
presented in random order to each network (neuron states 
are not reset), with each network being simulated for 10 
cycles before an MSE is computed. Terminals are log-
sigmoid neurons that access all available inputs within 
their scope, and multiple terminals per production are 
allowed. Other parameters match the default 
configuration of experiment 4.1. Standard 
backpropagation is applied with a learning rate of 0.1. 
Weights are initialized randomly within the range [-1,1], 
and we employed two models of assigning weights, either 
as network weights (each network has its own set of 
weights) or shared weights (weights are properties of the 
cellular productions and can hence be used/modified by 
several networks simultaneously). 

For comparison, we also trained a user-defined 2-layer 
neural network with 2 hidden neurons and 3 output 
neurons, and a user-defined 3-neuron single-layer 
network, using multipass training for 200 epochs and 
alternatively, single pass training for 2000 epochs. All 
training and evolution runs were repeated 30 times. 

4.2.2 Results & Discussion 
Results for first 100 generations are plotted in Fig. 7; 
Table 2 provides final generation statistics. The user-
defined networks converge quickly to their best possible 
error (limited by the relatively high learning rate), with 
the single-layer network performing expectedly worse. 
Our system performs only marginally worse than the 
user-defined multi-layer network, but takes a while to 
converge.  

Employing shared weights leads to lower errors than 
otherwise, which is surprising, as one would expect unfit 
networks to ‘harm’ the weights of fit networks – instead, 
the weight sharing appears to stabilize the evolutionary 
development. Even so, individual networks oscillate 
noticeably. The instability of the backpropagation, 
particularly if cyclic links are present, likely conflicts 
with the strict evolutionary selection process – occasional 
lapses in performance may be penalized 
disproportionately. The fitness of a learning network (or 
any automata network with an indeterminate error) 
should perhaps not be derived entirely from its present 
error; a review of network performance over several 
generations may be necessary as the basis for a proper 
fitness assessment. 

The high variability is also a likely cause for so many 
large solutions surviving in the population. Compact 
solutions are found, but have to compete with many other 
solutions. In general, the total connectivity of neural 
terminals will produce a bias towards highly connected 
architectures. It is not yet clear how to best accommodate 
n-ary terminals (where n >> 2) within our system, but we 
are confident that significant improvements can be made.  
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5 Conclusion 
In this paper we presented a system for encoding and 
evolving automata networks as a special class of 
hypergraph grammars. The efficacy of this system was 
demonstrated on the problems of symbolic regression and 
the design of neural network architectures. A high degree 
of variability between runs was also observed, however. 
This can be partially attributed to the discrete nature of 
the solution space, but also to the premature convergence 
of some populations. This state is particularly difficult to 
overcome within our system, as optimal solutions can 
only be created if the correct building blocks are present. 
Establishing building block diversity, and, by extension, 
network diversity, must thus be regarded a prime concern.  

Multi-objective selection appears to offer little benefit in 
this regard. In fact, over the total run, more search 
samples are likely to be allocated to small networks rather 
than large networks (and their building blocks). It is 
noteworthy that the system produces better solutions with 
lesser multi-objective constraints and higher mutation 
rates. Such a parameter choice would be expected to 
generate bloated, high-dimensional solutions, but, as 
experiment 4.1 indicates, fragments of these solutions are 
evidently useful and ultimately precipitate out, without 
much visible overhead in the final grammars. 

The solutions generated by our system, especially for the 
symbolic regression problem, reflect the potential of 

operating in the graph domain, by drawing on the benefits 
of reuse and recurrency. Yet both the regression as well 
as neural network design required only feed-forward 
topologies as solutions. The system can construct any 
graph, including feed-forward/bipartite ones, which was 
principally shown with this paper, but its forte should be 
evolving cyclic topologies. In order to construct useful 
recurrent networks, however, concepts of signal timing, 
e.g. delay lines, must be accommodated. A future paper 
shall report on progress in this area. 
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