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Abstract 

The individual cognitive science disciplines all have 
contributions to make to the understanding and modelling 
of human learning. Our previous research has explored 
unsupervised learning of phonology, morphology and 
low-level syntax, as well as basic noun, verb and 
preposition ontology and semantics, plus musical and 
speech prosody.  Successful applications using a mix of 
supervised and unsupervised techniques include speech 
control of equipment, deep web search, confused word 
spelling correction, multi-lingual semantic models and 
audio-visual speech recognition.  

Our current research is focused on doing simultaneous 
learning of ontology, syntax and semantics by embedding 
the learner in realistic situations and by developing low-
level biologically-plausible models of perceptual and 
cognitive processing. 
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Stereophony, Stereopsis, Stereognosis, Stereosemy, 
Cognitive Linguistics, Computational Linguistics, Sensor 
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1 Introduction 

1.1 The Total Turing Test 

The dream of an intelligent, thinking, learning machine is 
older than the computer itself, both in science and science 
fiction.  While some AI texts will go back beyond the 
Turing Test, it was turing who formally recognized that 
our understanding of the terms learning and thinking is 
intrinsically defined by our subjective experience of our 
own thought processes and our interactions with other 
people.  Turing (1950) not only defined an objective test 
to capture the intention behind these subjectively defined 
terms, but predicted that to achieve human equivalent 
performance it would be necessary to arm a robot with 
“the best sensors money could buy” and it would then 
learn to understand and interact with the world in the 
same way a person does – this thus introduces the Symbol 
Grounding Assumption, that language needs to be 
grounded in the real world.   

Turing also predicted that by 2000 a computer would be 
able to fool people into thinking it was human for 5 
minutes or more at least 30% of the time – this was 
actually achieved by a Loebner Prize (see loebner.net) 

competition bronze-medalist in 1998 (with 10 ‘judges’ of 
whom 5 were experts in some aspect of Cognitive 
Science and 5 were selected to be representative of the 
Australian population generally, as were the 
‘confederates’ the programs were compared with). More 
informally, Weizenbaum’s 1966 Eliza program was 
already so convincing that people who were not expecting 
a program believed it was human and would not believe it 
was a computer when they were told.  Weizenbaum’s 
Eliza was so successful that he felt obliged to write a 
book (Weizenbaum, 1976) decrying the idea of using it as 
a surrogate psychiatrist.  This behaviour is a 
manifestation of ‘the Charitable Assumption’ – our social 
and linguistic default is that other people are like us and 
have a similar background understanding and beliefs of 
the world, society and language as us, often leading to 
surprise and/or repairs when violated. 

When a Natural Language or Artificial Intelligence expert 
looks at Loebner Prize or Eliza scripts, it is clear that they 
are a long way from what we would expect of a human-
human conversation.  This is why Loebner is not happy 
with just a 50% pen-pal success rate but wants evidence 
of understanding, of grounding, and has therefore 
required that there be an Audio-Visual component to the 
competition – the Gold Medal winner needs to 
demonstrate an ability to talk about the world, needs to 
demonstrate that it is grounded, and a proposed ‘Total 
Turing Test’ or ‘Gold Medal Test’ is based on the 
kindergarten paradigm ‘Show and Tell’ (Powers, 1998). 

1.2 Ontology and Ontogenesis 

For centuries philosophers have discussed the nature of 
existence and the term ‘Ontology’ has been applied to 
this area.  Since 1980, I have coerced this term to refer to 
the ‘theory of existence’ that a child develops implicitly 
as it learns both about the world and to communicate 
linguistically, as the basis for the grounding of language, 
and in particular of both syntax and semantics.  From 
around 1990 it has come into increasingly common usage 
in computational linguistics to refer to formal handcrafted 
representations of the relationships between concepts, 
however in this paper I continue to use it to refer to an 
individual human’s unconscious ‘theory of existence’ that 
is perceptually grounded in his social and physical 
environment.  I want to distinguish clearly the pseudo-
semantics and pseudo-ontologies, that are mere 
relationships between symbols, from the true semantics 
based on grounded ontologies whose relationships with 
percepts derive directly from the real world, whether in 
the human brain or a robotic brain or a brain model. 

Biologists have traditionally used the world 
‘Ontogenesis’ to refer to the unfolding of the structure of 
an organism, and more generally a biological unfolding 
of events. Whether this term in its true biological sense 
rightly applies to language depends on both the nature of 
the structure and events envisaged in the traditional 
definition, as well as the theoretical paradigm of language 
development.  In the 70s, language was assumed to be 
innate, and mediated by a specific Language Acquisition 
Device, and thus the development of language fit the 
definition of unfolding of events and/or structures.  For 



those that reject this viewpoint and recognize the role of 
self-organization, learning and environment in the 
ontogeny of language, the use of the term can be 
understood as a metaphoric extension and is not intended 
to have any implications as to whether language is innate 
or acquired, a product of nature or nurture.   

More recently the recognition of the inadequacy of the 
genome to determine biological and concomitant 
structure has led to the use of the term ‘Epigenesis’ to 
recognize the role of self-organization and environmental 
influence, whilst ‘Phylogenesis’ emphasizes the 
genetically determined distinctions between species, 
giving rise to a three-dimensional characterization with 
Phylogenesis, Ontogenesis and Epigenesis as the axes 
(Sipper et al., 1997), which is still habitually subsumed 
into Linguistic Ontogenesis (Slobin, 2004). 

1.3 Stereology and Stereosemy 

The term ‘Stereology’ refers to the development of a 
mensurable understanding of the 3-dimensional objects 
and relationships based on lower dimensional sensors and 
representations. We apply this term advisedly to the 3D 
interpretation of the multiplicity of sensory-motor 
percepts that are interpreted by the brain.  The terms 
stereophony and stereopsis, as well as the less familiar 
stereognosis, refer to the limited stereology that occurs 
within the single modalities of hearing, sight and touch 
respectively. A multimodal analysis can provide 
information that is not available within a single modality 
and thus the fusion of information from multiple 
modalities can provide a more accurate and detailed 
Stereology.  Moreover, there is evidence that motor 
control, feedback and proprioception, as well as intention, 
functionality and purpose, all play a major role in the 
development and nature of our Ontology, and a complete 
understanding of the sensory-motor extends to the 
nervous, circulatory and immune systems, so we extend 
our definition of perception to include the full sensory-
motor range (Powers and Turk, 1989). 

At the level of cortical structures, it is well known that the 
sensory and motor cortices evidence 2-dimensional 
homuncular representations of the human body – 
distorted homunculus pictures representing the relative 
areas associated with different parts of the body are 
ubiquitous in basic Psychology or Neurology textbooks.  
More controversial is our hypothesized backprojection of 
the entire homunculus onto a specific organ – this 
underlies the homunculus theory basis for natural 
medicine techniques such as iridology and reflexology, 
but also makes strong theoretical predictions about 
mechanisms for learning associations.  

Whereas Stereology refers to the abstraction of 3-
dimensional information from 2-dimensional input, there 
is an additional interpretive step in associating diverse 
percepts and components with a single object or event – 
this we will call ‘Stereosemy’ and it is 4-dimensional in 
nature as time is an essential additional dimension used to 
associate percepts that belong together.  Stereology refers 
to an objective reconstruction of a mensurable 3-
dimensional representation, whilst Stereosemy refers to 

the subjective imputation of a meaningful 4-dimensional 
representation of event and object integrity in space-time. 
For parts, aspects or attributes of imputed events or 
objects to be associated in the Stereosemy requires that 
they be proximate in both space and time, with biases 
towards contiguity, convexity and connectedness – that is 
there should be a trajectory or continuity connecting the 
parts or else there is an expectation, triggering surprise, 
that something is hiding the connections.  In a spreading 
activation model (Anderson, 1983; Deane, 1992) the 
relationship between object parts, cores and wholes is 
dependent on the integrity of these connections.  

1.4 Synchrony and Assembly 

Adding the dimension of time introduces sequence and 
simultaneity as aspects of sensory-motor fusion.  This 
leads to a 4-dimensional correlation of sensory-motor 
percepts. To be related in the Ontology, however, does 
not require the continuity biases that characterize 
Stereosemy, but rather the Ontology is characterized by a 
conceptual or taxonomic representation mediated by 
similarity and without any requirement of space-time 
proximity. Thus at this point we are focussed at a much 
lower level of abstraction than that of Ontology. 

Events, internal, external or reflexive, logically and 
chronologically correlate across all pertinent percepts, 
and objects we treat as a special case of events made 
salient by their appearance, disappearance, alteration or 
motion.  Furthermore, there is evidence that entire 
networks of neurons that represent information about an 
event, whether direct percepts or higher level concepts, 
fire synchronously forming (cortical) Hebbian cell 
assemblies that tend to fire with the same pattern and in a 
fixed phase relationship. The different frequencies seen in 
EEG are hypothesized to relate to the round trip time for 
such cell assemblies, the mechanism is hypothesized to 
be direct or indirect recurrence, whilst the function is 
hypothesized to be the binding of the diverse cell clusters 
to represent an event (Lutzenberger et al. 1994, 
Fingelkurts et al. 2003). 

It is clear that, at the perceptual level, the correlation of 
information can serve to identify a single event or object 
that is perceived in multiple ways or across diverse 
portions of the sensorium.  This might be a clap perceived 
in terms of motor activity, touch, pain, generated sound 
energy (at a specific range of frequencies with a specific 
temporal pattern) and changes in the intensity of reflected 
light (at a specific range of frequencies in specific parts of 
the field of view), or it might be a dog that barks (at a 
specific range of frequencies with a specific temporal 
pattern), is seen to have particular colour, texture and 
motion (again perceived visually in a variety of ways), is 
smelt, and felt, with associated motor actions or responses 
(active patting or reflexive withdrawal of the hand).  The 
same mechanisms that correctly identify intrinsic aspects 
of an event or object will also identify extrinsic (e.g. 
linguistic, metaphoric or superstitious) aspects of an event 
of object since there is no way of distinguishing 
perceptually that the colour of one person’s hair is 
intrinsic (natural) and another’s is extrinsic (dyed).  
Children have to learn that the names and conventions 



surrounding objects and events are arbitrary rather than 
tightly bound to the object.  The field of Cognitive 
Linguistics (see e.g. Deane, 1992) is built on the 
hypothesis that all of language, and in particular 
phonology, syntax and semantics, is built on this kind of 
mechanism, which identifies a variety of relationships 
that we may in different contexts refer to as emic, 
analogous, metaphorical or metonomous. 

2 Applications versus Models 

2.1 Artificial Intelligence/Cognitive Science 

In the earliest days of Artificial Intelligence, the field was 
dominated by Computer Scientists with significant 
representation by Psychologists who saw the computer as 
an opportunity to model their theories.   Linguistics, 
however, also had its connections with Computer 
Science, but these tended to be more closely allied to 
Compiler Technology and Abstract Machines than to 
Artificial Intelligence – as illustrated by the cross-
fertilization that lead to the understanding of the 
Chomsky hierarchy of languages in terms of both 
syntactic constraints on languages and memory 
constraints on machines. Similarly there was more of a 
connection between Neurology and Computer 
Architecture than with Artificial Intelligence. 

The advent of Cognitive Science was born in large 
measure by the inconsistency and incompatability of 
theories that had developed in one field but had 
implications for another.  In particular, Chomskian 
Linguistics made assertions or predictions that impinged 
directly on Biology, Psychology, Psycholinguistics and 
Computer Science. In my case, I was concerned that 
Natural Language Processing was largely proceeding in 
ignorance of Linguistics and Psycholinguistics, and that 
Biologically-motivated Neural Networks were at first 
denigrated as useless and then largely replaced by 
Artificial Neural Network models that explicitly rejected 
the constraints of Biology. Furthermore, there were 
constraints that were recognized in Psychology that were 
not being applied in either Linguistics or Artificial 
Intelligence. 

It is not possible to go into any detail on these points, and 
indeed I have previously done so at book length (Powers 
and Turk, 1989), but rather I will seek to elucidate briefly 
some of the key insights that have been missed and 
regained.   But first my focus is on the general premise 
that biological mechanisms of language, learning and 
thought are worth exploring computationally.  There are 
two main reasons for this: 

a. Biological, linguistic, neurological, psychological and 
sociological models all need to be computationally 
feasible and verifiable.  That is a model that is provably 
impossible on computational grounds or whose 
predictions cannot be verified from a computer model, 
should be rejected, following a Popperian paradigm. 

b. Computational and engineering goals that correspond 
to lowest common denominator human capabilities can 
usefully adopt as their starting point the known 
mechanisms, constraints and load characteristics of their 

biological counterparts.  It is not necessary to labour the 
point by claiming that these are optimal in the sense that 
they are God-given or Evolution-optimized. Rather, when 
computers can’t achieve anything like the performance of 
humans, achieving that level as a minimum is a 
reasonable first step before attempting to do better. 

2.2 Poverty, Connectedness and Chunking 

2.2.1 The Poverty of the Gold 

One of the first results that heralded the age of Cognitive 
Science was Gold’s (1967)  proof that it was impossible 
to learn a superfinite language in the sense of 
‘identification in the limit’ without negative feedback, 
and the corresponding evidence from Psycholinguistics 
that children neither received nor responded to negative 
feedback. 

The fallacies in this argument are spelled out in Powers 
and Turk (1989), but in particular: 

a. Gold (1967) himself proved that with ‘anomalous text’ 
where there were constraints on the ordering of the 
examples, overt negative information was required.  
Others very quickly showed similar positive results for 
different models, and in particular probabilistic 
grammars. 

b. There is little evidence that language is superfinite in 
the sense of Gold’s assumption – that would imply that 
clauses or phrases could exceed the length of our lifetime 
(conjunction and concatenation are not an issue).  There 
is even less evidence that language must be at least 
context free as has often been claimed by Chomskian 
linguists – this would imply an infinite stack and a head 
to accommodate it. 

c. There is evidence that children have available positive 
examples of all the constructs they learn and can take into 
account positive and negative evidence, providing that the 
input is not too far outside their level of competence.  Our 
theory of anticipated correction is based on evidence that 
both adults and children autocorrect when what they say 
‘doesn’t sound right’. Also the evidence is that children 
do not learn their parents’ language(s), but develop their 
own unique idiolects and dialects. 

d. The model does not take into account grounding. 

2.2.2 The Locality of the Net 

Another of the early results in Cognitive Science was 
Minsky and Papert’s (1969) proof that simple 
biologically-motivated Perceptrons were not able to 
determine concepts like ‘odd’ or ‘connected’, but were 
able to handle abstract mathematical concepts like 
‘convexity’.  This led to the suppression of neural nets for 
almost 15 years, on the basis that if a Perceptron couldn’t 
deal with such simple concepts it wasn’t much use. 

The fallacies here include: 

a. Far from being abstract and mathematical, recognizing 
convexity corresponds to the facility of human Perception 
to see that there is a hole in your shirt, a dent in your car, 
or a piece our of your apple.  This is achieved by low-



level subconscious parallel processing at the level of 
Perception, the level the Perceptron was designed to 
reflect. 

b. Connectedness requires tracing a path and parity 
determination requires counting.  The Perceptron result 
should thus not be surprising as the child doing the 
puzzles in the Sunday paper consciously traces the path 
from the rabbit to the carrot in the maze and consciously 
counts the number of dots on the clowns shirt to work out 
which is odd man out, suggestive of high-level sequential 
conscious processing. 

c. The fundamental locality constraint, which observes 
that each neuron has a relatively small fan in and fan out 
of connections to other neurons, reduces the problem to 
manageable complexity whereas the subsequent fully-
connected Multi-Layer Perceptrons have scalability 
issues as well as an overt assumption of supervision. 

2.2.3 The Magic of the Seven 

Of a somewhat different character is the drawing together 
of a variety of research on diverse cognitive constraints 
by Miller (1956). There are some fallacies circulating 
regarding this, in particular a lack of recognition that the 
paper addresses a number of quite independent 
phenomena (limitations on discrimination, subitized 
counting, working memory) that seem to have quite 
independent underlying causes.  The first evidence of the 
significance of this paper is that it represents a concern 
for the underlying cognitive limitations that underlies the 
fallacies in relation to the Poverty and Perceptron results.  
Beyond that, are essential to guide development of 
biologically-plausible language and learning models, as 
in the development of Human-Computer Interfaces that 
optimize the way information is presented based on an 
understanding of cognitive limitations (Powers and 
Pfitzner, 2003). 

2.3 Self-Organization of the Pudding 

Now we come to the key insights as to how a child’s 
language and ontology can self-organize given that the 
child and his social and physical environment, constitute 
a closed system from the perspective of learning – there is 
no teacher or supervisor outside the system. The learning 
paradigm that is relevant is one of self-organized 
unsupervised multimodal learning, and whilst in a 
supervised paradigm, there is an automatic mechanism 
for evaluation, in an unsupervised paradigm there is none 
– patterns are simply discovered according to 
programmed biases. 

2.3.1 Unsupervised versus Supervised 

The Poverty and Perceptron results we discussed above 
are representative of two distinct learning paradigms 
according to whether or not there is a teacher available to 
say if examples are right or wrong – classically both 
paradigms assume there is a source of examples, with the 
unsupervised paradigm having only positive examples 
and the supervised paradigm having labelled positive and 
negative examples.  Other supervised paradigms may 
label more specifically – e.g. with POS tags for Parts of 

Speech.  However, for theoretical purposes this may be 
regarded as separate binary positive-negative labellings 
for each tag. Paradigms that label structures or rules as 
being correct or not, or belonging to a specific POS or 
not, are however somewhat different – the critical 
observation is that, like the POS labels, the structures are 
inventions that have no documented relation to 
neurological reality. 

Gold’s proof, in an unsupervised paradigm, led to the 
conclusion that supervision was necessary in the sense 
that a source of labelled examples was required – it is 
necessary to know which sentences are grammatical and 
which are not, otherwise it cannot be learned.  Minsky 
and Papert’s proof, in a supervised paradigm, was totally 
independent of the learning – they showed that it was 
impossible to represent the correct answer with 
Perceptrons, so it was impossible to learn it. 

In fact, the distinction between supervised and 
unsupervised is not clear cut. The fact that sufficient 
supervision for Gold’s Identification in the Limit could be 
achieved using ordering or statistical information 
illustrates this.  Indeed any supervised learning system 
can be used in an unsupervised mode to learn auto-
associations – that is one part of the input (from the same 
or a different modality) can be used to predict another, 
and often this will lead to useful categories or rules being 
developed.  Conversely, labels can be provided to an 
unsupervised system as an additional input and treated in 
the usual way, and often this will change the bias of the 
system to prefer classes that correlate with the provided 
labels. 

2.3.2 Evaluation in Application 

The obvious problem with unsupervised learning is that 
there is no way of evaluating it, since the data sets for 
supervised learning are all based on a pre-existing theory.  
Given that self-organization and unsupervised learning 
are used to discover new patterns and invent new 
theories, they cannot be evaluated against human theories 
that are known to be incorrect or incomplete.  All a 
supervised learning paradigm can achieve is to take the 
expert out of the loop and substitute the computer in the 
application of the expert’s theory to new data.  It is not 
capable of improving the theory, and depending on the 
learning algorithm used it may not even be capable of 
disproving the theory since in general supervised 
algorithms can be trained to give perfect results and deal 
with any desired balance between rules and special cases.  
The best we can achieve is comparing competing theories 
and competing learning algorithms. 

A better way is based on the aphorisms, ‘The proof of the 
pudding is in the eating’, and ‘The exception that proves 
the rule’.  Puddings are for eating not for dissecting and 
analysing – similarly Language is for communicating not 
for dissecting and analysing.  Our approach has thus been 
to compare unsupervised and supervised algorithms in 
real applications and thus gain objective performance 
measures rather than the subjective feeling that one rule 
or class is better than another. Furthermore, the original 
meaning of proof is exemplified in the idea of heating 



silver to allow removing the dross and improving the 
purity – it does act as a test, but beyond that it is a 
mechanism for improvement. 

In Natural Language Processing, it has become 
conventional to throw out the exceptions (e.g. ‘water’ as a 
verb) to improve the statistics, because the model is so 
bad and dependent on the lexicon at distinguishing noun 
from verb that allowing this case just opens the door to 
more errors (Entwisle and Powers, 1998).  These 
observations have led to the development (Powers, 2003)  
of unbiased measures for evaluating both supervised and 
unsupervised algorithms for both binary and arbitrary 
labellings. 

In summary, our approach is to use an unsupervised 
paradigm across multiple modalities, to evaluate results in 
applications of commercial relevance, and to use 
unbiased measures of informedness. The remaining 
sections of the paper summarize our scientific goals and 
the models we are currently developing, but here we 
illustrate this principle with some application-oriented 
evaluation we have performed to date. 

2.3.3 Examples of Applications 

a. Spelling Correction/Chinese Transcription – statistical 
information and automatically (unsupervised) derived 
categories are used to correct 10,000 commonly confused 
English words and then applied to choosing the correct 
characters for a Chinese PinYin transliteration (Powers, 
1997b; Huang and Powers, 2001; 2003). 

b. Machine Translation/Summarization – derivation of 
holo-/meronym and hyper-/hyponym relations and new 
algorithms for characterization of word similarity and 
comparison of unsupervised approaches with Wordnet 
both directly, and in application to Machine Translation 
and Summarization, focussing currently on nouns and 
verbs. In this case the performance of our algorithm using 
WordNet already significantly exceed human 
performance expectations (Yang and Powers, 2005), so it 
is not necessarily expected that unsupervised learning 
will do better – doing so would be evidence against the 
model being biologically accurate to the extent that the 
task is a reasonable one.  The machine translation, 
document summarization, spelling correction and Chinese 
transcription tasks are natural tasks performed in context, 
whilst comparing lists of words or doing Wordpower 
(Reader’s Digest) or TEFL Examinations are tasks 
performed out of context and contrived purely as tests – 
and it is known that human native speakers can achieve 
better test results with training. 

c. Information Retrieval User Interface – this area is rich 
with application not only for word similarity, semantic 
and syntactic classifications, but also for investigation of 
the role of cognitive limitations and context of human and 
machine performance in common tasks such as 
websearch.  Applications have included user and context 
modelling (can we use unsupervised learning to improve 
queries, rankings and summaries), analysis of the way 
people use keywords to describe documents as opposed to 
search for documents, discovery or relationships between 
dynamic pages and the underlying databases 

(YourAmigo.Com) and development of interactive 
multidimensional search interfaces (Powers and Pfitzner, 
2003).  

d. Speech Recognition/Control – this area also allows 
the use of syntactic and semantic models to improve 
selection of the correct word, but is also a focal point for 
multimodal fusion, using lip-reading to improve 
performance (Lewis and Powers, 2005).  Specific 
applications include voice control of home equipment 
(I2Net.Com.au, Clipsal Homespeak), use of speech 
recognition in a sports stadium or a bank (commercial 
applications under development for noisy environments). 

e. Brain-Computer Interface – this area tests 
unsupervised algorithms, for the separation of noise, 
artefact and signal components of EEG signals, in 
applications ranging from comparing the conscious and 
subliminal processing of language (Powers, Clark, Dixon 
and Weber, 1996) to monitoring the skill acquisition and 
stress levels of a soldier, testing the predictions of 
unsupervised models in relation to functional and content 
words, and extending our home control interface to allow 
multimodal AV+biometric control (commercial-in-
confidence and military applications under development). 

3 Biologically-Plausible Unsupervised Learning  

3.1 Unimodal Models 

Unsupervised learning and self-organization as 
biologically-plausible models have a history that extends 
back to Turing (1952) and von der Malsburg (1973), were 
generalized and popularized in the Kohonen Net, and are 
also broadly used in other guises, notably Independent 
Component Analysis (ICA). Notably, von der Malsburg 
(1973) demonstrated how the on-centre off-surround 
lateral distribution function provides sufficient constraint 
to model self-organization of the cortical hypercolumns 
sensitive to angles and Kohonen (1988) demonstrated the 
way the same kind of constraint produced an array of 
phonetically sensitive regions that resembled a 
typewriter, in which speech corresponds to trajectories 
across this surface, and even reduced speech produced 
recognizable trajectories.  Powers (1983a, 1991) showed 
that the same approach could self-organize phrase- and 
clause-level structure from word-level input (1983) and 
character, phoneme or speech input (1991; 
Schifferdecker, 1994).  Powers (1983b) also showed how 
the required lateral interaction function could be 
explained from first principles based on neuroanatomical 
considerations. 

The connection between statistical models and 
biologically-motivated unsupervised learning or self-
organization is very strong, but they are not equivalent 
classes – clearly not all statistical models have biological 
plausibility. Nonetheless it can be useful to consider the 
neural network models from a statistical perspective, and 
the lateral distribution function can be related (by a scale 
factor of normalization) to a probability distribution 
function (over distance), the area of network associated 
with a particular feature is monotonically related to the 
probability distribution function (across features), and the 
optimal sigmoid for ICA (Lee et al., 1999) is a linear 



function of the cumulative distribution function (of the 
sources). It should be noted that ‘sources’ refers to the 
underlying signals or causes that are perceived only in a 
mixed and convoluted way after modulation, transmission 
and perception within a medium/modality.  The 
components detected by ICA correspond in many cases to 
features (e.g. edges or voicing), as well as to canonical 
sources (e.g.  speaker  location and identification). 

3.2 Multimodal Models 

Moving from a single modality to multiple modalities 
gives us not only the opportunity to learn more from a 
richer array of sources, but allows us to expand the range 
of paradigms available to us for learning.  The obvious 
approach to multimodal unsupervised learning is not 
necessarily the best – whilst it is possible to simply throw 
everything at the learning system in an undifferentiated 
fashion, this does not correspond either to the 
differentiated structure of biological systems or the 
exigencies of achieving efficient learning and processing. 
Even in a supervised context, the undifferentiated 
approach tends to lead to lesser performance (efficiency 
and efficacy), and even catastrophic fusion – that is the 
results for multimodal learning are worse than can be 
achieved in one of the individual modalities alone.   

3.2.1 Early Fusion 

Early fusion of raw attributes across the modalities can 
usually be improved by a ‘horses for courses’ approach – 
the individual modalities are used to identify features they 
are good at identifying, and a late fusion of attributes and 
features is performed, possible making use of information 
or estimates about the noise, error and reliability 
characteristics of each mode in the current context (Lewis 
and Powers, 2005).  

Although the terms early and late fusion are usually used 
in relation to a supervised learning paradigm, it is clear 
that the concepts can be adapted to unsupervised learning, 
and indeed there are a number of ways we can see this as 
a natural consequence of use of structured multimodal 
learning paradigm. 

3.2.2 Multimodal Self-Supervision 

The supervised-unsupervised dichotomy breaks down in a 
multimodal context as we can arrange to predict features 
or events in one modality based on input from another – 
that is one modality can be used to supervise another.  
Thus we have the full range of learning algorithms 
available to us, and we highlight again our earlier point 
that it is the paradigm that is supervised or unsupervised, 
and specific algorithms may be used in either mode 
notwithstanding their design for or close association with 
one paradigm.  The extension of Kohonen Nets to Linear 
Vector Quantization, and the self-organization of the 
hidden layers in a Backpropagation network are well 
known examples. 

3.2.3 Unsupervised Emic Fusion 

Once unimodal unsupervised learning has been 
performed, either using an unsupervised paradigm or a 

multimodal self-supervision paradigm, feature 
information is automatically available for late fusion.  In 
the case of the more powerful multimodal self-
supervision paradigm, there will also be information 
about the noise, error and reliability of the unimodal 
features in terms derived directly from the predictability 
of attributes or features of the other modalities. 

The raw attributes or inputs for each modality are 
intrinsically etic in nature – that is they are objective and 
the values are independent of the linguistic, behavioural 
or social characteristics or purposes of the perceiving 
individual or, in this case, system.  However, once a 
learner has started to learn from examples from a 
particular linguistic, behavioural or social environment, 
the learned features reflect the probability distributions of 
that environment and hence aspects of the linguistic, 
behavioural or social characteristics and purposes that 
underlie and determine them.  These features thus tend to 
be emic in nature and are increasingly subjective and 
dependent on the linguistic, behavioural or social context 
to which the learner has been exposed (Pike, 1954; Pike 
and Pike, 1977). 

Adding to this model the possibility of recurrence leads to 
a Piagetian model of reflection and reflecting.  The first 
level of features tend to be unimodal and are based on 
percepts alone, but successive levels of features 
increasingly build on mixtures of etic and emic attributes 
and features, facilitating the representation and learning 
of more complex concepts (Powers, 1997) as well as a 
model that closely reflects the blackboard models that are 
popular in Psychology, Speech Recognition and Artificial 
Intelligence (van der Velde and de Kamps, to appear; 
Powers, to appear). 

4 A Biologically-Plausible Stereosemic Model 

We now outline our low-level model.  Whilst we and 
others, (e.g. Powers and Turk, 1989; Deane, 1992) have 
marshalled evidence concerning particular areas of the 
brain and their role in various aspects of language 
processing, our focus at present is to understand what 
kinds of interactions can explain stereosemy and we feel 
it is premature to devote much energy to hypotheses 
about higher levels or lower level of processing. We 
assume that the sensoria for each modality are projected 
across the brain hemispheres and that visual, auditory and 
vestibular projections of both eyes and ears are available 
as inputs to our stereosemic model, ignoring the senses of 
taste and smell. 

 The cortex is classically divided, on the basis of the gross 
neuroanatomy and characteristic densities of different 
classes of neurons, into six layers, I to VI, which alternate 
between white and grey, and in turn may be subdivided 
into finer sublayers distinguished by lower case letters.  
Generally, Layer IV is the primary input layer, and this 
accepts in particular sensory information relayed or 
echoed by the thalamus. Layer VI is the primary output 
layer that projects back to the thalamus, whilst layer V 
mainly projects to the striatum, brain stem and spinal 
cord.  Layers II and III are hypothesized to be responsible 
for multimodal cortical association as they project to 



other areas of the cortex both in the same hemisphere and 
via the corpus callosum in the other hemisphere.  

Whilst it is usual to think of feedforward and derived 
recurrent neural networks, this is at best an 
oversimplification and at worst nothing like what we see 
in the cortex.  The classical biological model assumes that 
clusters of neurons, possibly of different classes, act 
together as a high level cell and make the apology that the 
models probably apply to such cells rather than neurons.  
To the extent that there is feedforward and recurrent 
activity, there would appear at least two such networks – 
one projecting inward and one outward from layer IV.  In 
fact it looks more like projection from layer IV to III, II 
and I for processing and association, then reversed 
projection from those layers to layers V and VI for 
output. We should also allow for the possibility that 
(distinct and common) neurons may be part of separate 
virtual layered networks that are overlaid in the same 
cortical space.   

4.1 Visual and Auditory Input/Output 

Currently our focus is on the Visual and Auditory 
modalities, both the inputs and the outputs that control 
convergence and focus as well as compensating for 
overall intensity. We will assume simple RGB visual 
input from a pair of colour cameras as representative of 
the kind of input available from the eyes, and will 
encompass retina, ganglia and the relevant (neo)cortical 
layers and regions into our model. We will assume 
multiple microphones but at this stage will not seek to 
model the modulations introduced by the pinnae or bone 
conduction – rather we will use at least four microphones 
(tetrahedral array) and preferably more (parallelepiped 
array).  Our robot baby was designed to include 
orientation and acceleration sensors as well as 
convergence, head orientation and limb locomotion 
motors (Powers, 2002), but at this stage we are confining 
ourselves to a simpler model with only cameras, 
microphones and wheeled locomotion, or even simulated 
world cameos. 

In relation to the visual cortex, there is evidence that 
layers II/III are concerned with major disparity detection 
and feedback to control vergence (and thence focus), 
whilst layers V/VI are concerned with minor disparity 
detection indicated for stereopsis. This is our focus here, 
and we similarly will not be concerned with modelling 
edge detection and shade/texture filling but rather would 
look for evidence of self-organization in these respects.  
Similarly we have  hypothesized that opponent colour 
relationships are self-organized and our work on face 
finding and lip tracking strongly suggests that the 
opponent colour system is essential to distinguishing 
mammalian foregrounds and features, from non-
mammalian (face) and mammalian (feature) backgrounds. 
In particular, the tuning of the red cones to haemoglobin 
is remarkable, and the red-green opponents appear to be 
optimized for distinguishing mammal from vegetation, 
whilst the blue-yellow is useful for distinguishing both 
features within a face or animal as well as animals and 
vegetation against a water/sky blue background. 

4.2 A Low-Level Laterally Recurrent Network 

A number of factors are involved in stereopsis and 
stereophony, not least of which is the need to adjust 
convergence and focus to the appropriate distance, both 
attentionally and during saccade. From a multimodal 
perspective, there is also a need to reconcile the 
difference between the speed of light and the speed of 
sound – a served tennis ball has covered a quarter of its 
trajectory by the time we hear the sound, but we regard 
these as simultaneous, the window for simultaneity 
varying from about 3ms to 3 seconds depending on the 
modalities involved and the contextual feedback.  
Distance can be estimated visually, from the motor 
control of convergence and focus, from disparity, from 
vestibular information about head movement versus 
expectation of target size, from perceived versus 
remembered as well as interocular texture variation, and 
from interocular velocity differences determined in 
tracking the target.  Aurally, we can use intensity and 
phase differences and visual-auditory delay information. 

The model we are exploring assumes rapid bijective 
distribution of left and right visual and auditory fields to 
both hemispheres.  There is some evidence to support a 
log polar representation of the opposite half of the visual 
field in V4 – the foveal area occupies the inner and the 
periphery the outer sides of the map, with a transition 
area between.  This has advantages in terms of centricity 
and orientation invariant recognition, recalling that 
translation can be accommodated by saccade.   

We propose that the recurrence between the cortex and 
the thalamus produces the characteristic synchronous 
labelling of the event even prior to Stereology being 
complete. We further propose a spreading activation that 
produces a match between labelled events from the same 
modality (stereopsis and stereophony) as well as across 
modalities (stereosemy) when firing patterns correlate at 
a specific location in the field of perceptual processing. 
The propagation time across the cortex is comparable 
with the interaural delay so that a sound can be 
automatically localized and the labelling interactions with 
the thalamus can trigger visual attention to the auditorally 
signalled event. 

The requirement for vergence and focal adjustment based 
on coarse disparity information from Layers II/III 
naturally precedes the availability of the fine grain 
information from Layers V/VI, but it is not clear from 
where the visual motion/change triggered attention 
signalling occurs, but this may take place in the thalamus 
through comparison of recurrent visual information with 
incoming perception.  The relative delays in the fusion of 
audio and visual information also contribute to automatic 
localization of the event in the depth dimension. 

4.3 Work in Progress 

The exploration of this model is experimental in nature, 
and we are seeking increased collaboration with 
neuroscientists to guide the precise parameterization and 
interpretation of the model.  Our initial goals are 
relatively modest, being to explore different theories of 
multimodal binding, synchrony and stereopsis, whilst 



avoiding the complexity inherent in the total vision and 
audition problems.  We are exploring variations on spatial 
and temporal, including spatiotemporal, encoding to 
study the role and nature of working memory and the 
binding of the individual percepts relating to an event.  
Our model is blackboard like, with the addition of a 
(bilateral or unilateral) spreading activation that provides 
very short term memory and the basis for stereology and 
stereosemy, with the coded recurrent pulse streams being 
directly initiated by the forwarding and recurrent echoing 
of information through the thalamus.   We hope in this 
way to bridge the gap to our existing higher-level 
learning models. 
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