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Abstract 
Eigenvector techniques are very common across computer science, artificial intelligence, data mining, 
computational linguistics, eResearch and in particular are important for reducing the size of “Big Data” and 
making it manageable.  But the cost of applying the standard PCA, LSI or SVD techniques is very large is 
huge unless we can operate on sparse data.  On the other hand, the techniques require for their proper 
operation normalization or standardization that destroys sparsity.  We explore in this paper, from both a 
theoretical and a practical perspective, techniques that can allow retention of sparsity and avoidance of the 
hugely expensive eigenvector reduction, including a straightforward introduction to SVD as well as a 
recommended procedure for standardizing data while maximizing sparsity. 

Introduction 
In this paper we analyze a variety of standard techniques used in machine learning, information retrieval, 
corpus linguistics and many other areas. We examine a number of issues relating to incorrect usage, the 
computational infeasibility of various approaches, and the inevitable sampling errors. We motivate much of 
the paper with applications from information retrieval but the techniques discussed and introduced are far 
more widely applicable. We consider primarily Singular-Value Decomposition, but the techniques we discuss 
are applicable to other variants and derivates of eigenvalue decomposition, including both usages of LDA – 
Latent Dirichlet Allocation (unsupervised but using an appropriate prior) and Linear Discriminant Analysis 
(supervised based on stretching the data according to the within and between class covariances of tagged data. 
This report originated in emails written in 2002 to 2004 and has circulated in this draft form since 2005, but 
has now been published as a technical report in response to increasing requests for tutorial exposition. 

The techniques we discuss are useful as a general preprocessing step for both supervised and unsupervised 
learning, as well as for information retrieval and visualization (IRV - Pfitzner, Hobbs and Powers, 2003). We 
will be exploring the modelling techniques and associated issues primarily in this IRV context, but also note 
that there are corresponding issues for postprocessing and evaluation for the learning applications. For 
supervised learning, the major issue we consider elsewhere is chance correction where we advocate 
Informedness (Powers, 2003;2009), a generalization of DeltaP and Youden’s J statistic which also has close 
relationships to Receiver Operating Characteristics Area Under the Curve, Gini, Kappa and Correlation 
(Powers, 2012abc), but unique among them is interpretable as the probability a decision is informed. For 
unsupervised learning, we have clusters or categories rather than tagged classes, and in general we are not 
even sure what the ‘correct’ number of categories should be.  Unsupervised comparison techniques including 
statistical, information-theoretic and pairwise counting techniques are reviewed by Pfitzner, Leibbrandt and 
Powers (2009). Chance-corrected techniques are also potentially important for boosting (Powers, 2013) and 
for assessment of diversity in ensemble fusion (Kuncheva and Whitaker, 2003).  

In particular, fusion of results derived from different preprocessing techniques, reduction parameters or feature 
selection protocols, can improve over any individual system; and uncorrelated sets of components can be used 
in different members of an ensemble with a strong expectation of achieving high diversity. However, in this 
paper we will assume that singular-valued decomposition is being used (a) to reduce the dimensionality and 
that the components exhibiting the strongest variance will be retained, and (b) that pairs (or other small sets) of 
strong components may be used for visualizations. Once reduction has been performed, other supervised or 
unsupervised techniques may be usefully use, including techniques for Blind Single Separation (BSS -  Li, 
Wen and Powers, 2003; Li, Powers and Peach, 2000), including notably Independent Component Analysis 
(ICA - Hyvärinen, Karhunen and Oja, 2001).  Note that semi-automated techniques are also commonly used, 
for example in EEG processing components that correspond to unwanted ‘artefacts’ such as eyeblink, muscle 
(EMG) or heart (ECG/EKG) signals may be manually identified and removed are reduction (Fitzgibbon, 
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Powers, Pope and Clark, 2007). More sophisticated techniques may be used to understand the nature of the 
artefacts and allow fully automatic removal of contaminants such as muscle (Fitzgibbon et al., 2013). 

The Singular-Valued Decomposition 
We summarize first some of the well known properties and applications of singular-valued decomposition 
(SVD).  This has been popularized over the last couple of decades in the context of information retrieval (IR) 
as latent semantic indexing or analysis (LSI/LSA) and we will use this application area as the primary example 
for making the algorithms and theory concrete.  We will however also keep in mind other example domains 
including automatic speech recognition (ASR) and electroencephalographic analysis (EEG). 

We will assume that data is provided in matrix A = aij and make varying assumptions about its normalization 
or distortion. In general both A and AT have interpretations as representations of one domain in terms of 
another, where the superscript T represents taking the transpose, viz. AT = aji. Here A represents the 
relationship between two different aspects of our data, e.g. documents versus words, or sensors (electrodes, 
microphones, pixels) versus time. We will try to avoid the word ‘dimension’ as much as possible because it 
can be used to describe both the horizontal and vertical size and indexing of a matrix as well as the different 
attributes or features of a vector (e.g. a column or row of a matrix) as well as totally different modalities or 
sources or domains (e.g. electrode, epoch, space, time).  

There are different conventions as to whether the rows or columns are interpreted as vectors, and indeed due to 
the duality of the analysis we can flip between the conventions at will by matrix transposition. However, 
strictly speaking the data should be demeaned, that is we need to subtract off the means of the vectors, and 
normalized or standardized, that is we divide by the standard deviations or root sum of squares of the vectors, 
before applying SVD. The demeaning leads to different representations depending on whether it is done for 
the rows or the columns, or both, and should be done for the vectors that are being analysed. 

For example, in IR we represent the corpus as a set of document signatures based on word frequency, and it is 
convenient to regard the set of features, in this case words, as fixed whilst allowing the possibility of meeting 
new documents and queries which we want to locate in terms of the signature space. It is common to represent 
these in a file with one document signature per line, so the corresponding matrix matrix has one document 
signature per row. It is obvious that this file representation is more easily extended with additional data points 
in respect of new documents or queries (pseudo-documents).  It is thus the rows that are demeaned and 
normalized, however transformations on the columns may also be carried out and TFIDF (see below) is a kind 
of column normalization that compensates for the information capacity of the corresponding word (more 
frequent words carry less information).   

Note that row normalization removes any direct sensitivity to the size of a document (though some indirect 
sensitivity should remain as longer documents tend to be more encyclopaedic in nature whilst small 
documents tend of necessity to be on a single specific topic). Note too that vector normalization removes a 
degree of freedom as the last value is predictable from the others given the constraint induced by 
normalization (the squares add to 1). 

The standard notation for the SVD of A is 

A = U S VT  

where U and V are orthonormal matrices representing rotations and S (sometimes L) is a matrix representing a 
scaling which has the eigenvalues of A, sii, represented in descending order along the diagonal, and zeros 
elsewhere. Basically the matrix notion AB simply omits the summation and subscripts for a collection of 
innter products or dot products of the rows of A and the columns of B: C = AB = cik = Σjaijbjk. Note that the 
subscript summed over is the common subscript between the two terms, so we sum over the variable which is 
the second subscript of the first term and also the first subscript of the second term, representing enumeration 
of the ith row and the kth column in this case. It is because of this systematic convention that we can drop the 
sigma summation symbol and the subscripts. We use ROMAN CAPITALS for matrices (BOLD if square), 
roman miniscules for vectors and italic miniscules for scalars, including indices, dimensions or elements of 
matrices and vectors. We automatically load variants of the same letter to represent matrix (A), vector (a), and 
vector length or square matrix dimension (a), and also use the ITALIC CAPITAL corresponding to an index i 
to represent its maximum size I. This is to be distinguished from the (square) unit matrix, I. 
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The standard LSI notation varies from this including using L (sometimes S) to represent a diagonal matrix 
with the squareroots of the eigenvalues, called singular values, and using D (for document) and T (for term) as 
the names of the rotations: 

A = D L2 TT 

The original SVD formulation derives from the application of the Eigenvalue decomposition known as 
Principal Component Analysis (PCA) to the covariance matrix AAT or ATA (which ever is the smaller, this 
defining the rank of A): 

AAT = U S2 VT ;  ATA = V S2 UT 

This follows by observing that as U and V are orthonormal their transposes represent the inverse rotations. 
More efficient calculation methods are available but are in general beyond the scope of this paper. 

Reduction and Compression 
If A is a matrix with u rows and v columns (u x v), then in the unreduced formulation, U has dimensions u x u, 
V has dimensions v x v, and S has dimensions u x v (viz. it is not square and thus not diagonal in the sense that 
implies being square). However the rank of A is  

s = min(u,v) 

and S may be rank-reduced to S with dimensions s x s, with a corresponding reduction of U and V to U and V 
by removing rows or columns that are multiplied by columns or rows of zeros in the unreduced S. This 
compression is completely lossless (apart from rounding errors already inherent in the unreduced version) and 
thus the subscript is usually dropped so that the same equations used for both the reduced and unreduced 
versions of SVD, though in reality there is no practical use for the unreduced versions. 

Since the eigenvalues of S are represented in descending order, as is the usual convention, a further potentially 
lossy compression may be achieved by reducing S to a k x k matrix K by dropping the rows and columns with 
greater indices and the smallest eigenvalues, along with the corresponding columns resp. in U and V.  If there 
are only 0 eigenvalues dropped, there is no loss – and at least one 0 eigenvalue will be present (apart from 
rounding errors) given the vectors have been normalized as described above. If small non-zero eigenvalues are 
removed, less than the estimated accuracy of the arithmetic procedure, normally something of o(nε) for a 
smallest representable value epsilon (ε), then the compression is still regarded as lossless and similarly if the 
the values omitted are regarded as representing noise or artefact rather than signal, then the compression can 
also be regarded as lossless, and with this assumption we can retain the form A = U S VT.  Otherwise the 
reduction is regarded as lossy and the error introduced may be characterized by its variance as the sum of the 
eigenvalues dropped from the covariance matrix AAT or ATA, or the sum of squared singular values dropped 
from S. 

The interpretation of the SVD will be discussed in more detail later, but to understand the errors introduced in 
compression it should be noted that the principal eigenvector or singular vector represents the line of best fit in 
the sense of minimizing the sum of squares error (SSE) and that this is rotated to become an axis and then 
scaled to become a unit vector.  Once this source of variance has been removed, the remaining eigenvectors 
can be understood recursively as discovering the other tendencies of the data.  An important corollary of this is 
that the error (SSE) introduced by compression is the sum of the eigenvalues or the sum of square of the 
singular values that have removed, and represents the variance that is not accounted for by the model 
(assuming A has been correctly demeaned as above). If this SSE is divided by the sum of squares of all the 
singular values, it may be interpreted as an error rate or probability (depending on the application). 

There are some papers in the LSI/IR literature that incorrectly refer to SVD as discovering independent 
features, but in fact it discovers only uncorrelated features and then only if the demeaning has been done as 
discussed above (and in the LSI literature it is normally not done). SVD minimizes the sum of squared error 
and thus only second order moments.  This makes sense when dealing with data from a distribution that 
approaches the normal distribution, but in general independence requires dealing with higher order errors as 
well, and this class of algorithm is known as Independent Component Analysis (ICA).  ICA algorithms usually 
perform SVD first and then minimize some or all higher order errors (often only third or fourth order, skew or 
kurtosis). 



Smoothing, Normalization, Correction and Reduction (v0.8) David M. W. Powers, AILab, Flinders University 

Interpretation 
We will focus on interpreting in the IR domain so that we contrast with the approach taken in LSI, but before 
we look at the interpretation of the SVD matrices it is useful to note the following identities and derived 
matrices. We use a superscript T to indicate the transpose, P to indicate the pseudoinverse, -1 to indicate the 
inverse, PT to indicate the transpose of the pseudoinverse or equivalently the pseudoinverse of the transpose, 
and -T to indicate the transpose of the inverse or equivalently the inverse of the transpose, noting that only 
square matrices of full rank have a true inverse. The original identities (1 to 4) are initially in unreduced form 
but the derived identities (5 to 24) are based on the reduced form, with SSE equal to the sum of squared 
eigenvalues omitted.  

A = USVT  = USVT (1) 

AT = VSUT = VSUT (2) 

where U is square and orthonormal before reduction, UT = U-1 (3) 

  and   V is square and orthonormal before reduction, VT = V-1 (4) 

  and   S = L2 = UTAV is square and diagonal after reduction (5) 

AP = VS-1UT (6) 

APT = US-1VT (7) 

I = L-1 UTAV L-1 = (UL)-1 A (VL)-T (8) 

 

AV = US (9) 

VTAT = SUT (10) 

VTAP = S-1UT (11) 

APTV = US-1 (12) 

UTA = SVT (13) 

ATU = VS (14) 

AP U = VS-1 (15) 

UTAPT = S-1VT (16) 

 

AVS-1 =  APTVS = U (17) 

S-1VTAT = SVTAP = UT (18) 

S-1UTA = SUTAPT = VT (19) 

ATU = SUTAPT = V (20) 

AV LP = UL (21) 

LPVTAT = LUT (22) 

LPUTA = LVT (23) 

ATU LP = VL (24) 

Equations 1 and 2 are repeated here as the definition of SVD and its application to the dual problem, 
transposing rows and columns, showing both reduced and unreduced forms.  The unreduced U and V matrices 
are orthonormal matrices which means that they are square, that the sum of squares of both rows and columns 
is 1, that both rows and columns represent an orthogonal basis and are uncorrelated, that the matrix may be 
interpreted as a rotation around the origin, and that their transpose is their inverse and represents the opposite 
rotation (3 and 4).  S is a diagonal matrix which when it multiplies on the left scales the rows, and on the right 
scales the columns, by the corresponding eigenvalues.  The product, sum and inverse of square diagonal 
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matrices are simply the diagonal matrices composed of the product, sum and reciprocal of the respective 
elements. The pseudoinverse SP of the unreduced form of S formed by replacing the eigenvalues on the 
diagonal by their reciprocals and taking the transpose becomes the true inverse S-1 in the reduced form. (When 
a matrix X is not square it does not have a unique inverse but will in general have multiple pseudoinverses that 
satisfy XPX = XXP = I.) 

Thus we have (pseudo)inverses for all three matrices in the decomposition and this allows us to determine 
pseudoinverses of A & AT (6 & 7) as well as the identities that are the basis of LSI. In particular, identity 8 
shows that UL maps the same latent values to documents that VL maps to rows. Identities 6 to 24 are all 
derived by the process of multiplying both sides of a previous identity by the (pseudo)inverse of a term that is 
to be cancelled from one side. 

Representations 17 to 20 reveal various additional interpretations of U and V and their transposes.  In 
particular U and V are not only rotations, but are also normalized representations of the vectors in their own 
right: U is a representation of the rows of A rotated by V and normalized to the unit hypersphere by S-1, and V 
is a similarly a rotated and normalized representation of the rows of AT. In their unreduced form U and V are 
actually quite uninteresting as they simply represent unit vectors along orthogonal axes.  In particular, the 
unreduced U and V matrices are not useful for classification or clustering as each is equidistant from all the 
others.  However in reduced form they are very useful for visualizing two dimensions at a time as the 
deviation from the unit circle represents the variance in the hidden dimensions – they will be on the circle if 
they can be described fully in the depicted latent dimensions alone, whilst if there is little relevance to those 
dimensions they will be located near the origin.  Note that unless A is square and unnormalized, U and V will 
always have been reduced (to s-1 columns, the rank minus the degree of freedom normalized out). 

Representations 9 to 16 are those that are most appropriate for purposes of compression, and where the 
reduction is lossless the results using L2 and Cosine metrics, and the clusters formed by clustering using these 
metrics, will be identical to (or in the case of visualizations, rotations of) those obtained with the original 
matrix, but they should be obtained more cheaply due to the reduction in the matrix sizes. 

Representations 21 to 24 are preferred by LSI in the belief that only they will allow words and documents to 
be depicted or accounted as near each other when they relate to the same topic.  In fact, all of representations 8 
to 24 have good properties in this respect with representations 9 to 16 giving the original results, 17 to 20 
giving results that completely normalize out the strengths of the different latent variables (LSI topics or 
senses) and 21 to 24 representing a compromise that does neither.  This can be seen by observing that 9 to 16 
are simple rotations of the original data and all the others are derived by application of a simple scaling by 
either L-1 for the LSI representations 21 to 24 or S-1 for the normalized representations.  

Identity 8 merely shows that the same scaling L applied to U and V produces a pair of dual transformations 
and representations UL and VL, each of which can transform A (or AT) into the other and when both are 
applied the distortions cancel. On the other hand identity 7 shows that the bilateral application exposes the 
variances that apply in both contexts. 

Noise, Artefact and Error 
Data compression and efficiency is not the only reason for reducing the matrix A to a more compact 
representation. In fact, often the reason is that rather than increasing error the reduction can actually reduce 
error of various kinds. 

The first kind of error is noise – which is to say anything that is mixed in with or otherwise affects the data of 
interest that we don’t regard as part of the signal.  In LSI, noise includes the apparently arbitrary choice 
amongst different synonyms or other alternate expressions, idioms or metaphors. The variance that results 
from this is often modelled using some variant of the Poisson distribution (and we will discuss normalizations 
appropriate to these models below).  The theory is that the low order eigenvalues correspond to this irrelevant 
variation. 

The second kind of error is artefact.  In IR, artefact may refer to some systematic bias in the data, for example 
the register and content bias introduced by the use of the Wall Street Journal as a source of information about 
English.  In EEG processing, artefact refers to signal that originates from sources other than the brain, in 
particular ocular and other muscular contamination. Artefact can result in very strong effects that correspond 
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to large eigenvalues, so these reductions must be made by identification of the corresponding components. In 
the case of EEG this is achieved more effectively by using blind signal separation (BSS) techniques such as 
ICA. 

Other kinds of errors that indeed produce very small artefacts include those that result from the finite precision 
used in the matrix calculations, and these should always be removed as they really represent zero variance. 

Where eigenvectors are removed that correspond to noise, artefact or error, whether the eigenvalues are big or 
small, the sum of squared eigenvalues actually represents the net reduction in error, and this is routinely 
reflected in improved results in subsequent processing. Factor analysis can be understood in terms of 
subtracting an estimate of the noise distribution from the covariance at an intermediate point in the SVD 
process and will be discussed below. 

Unfortunately, normalization is often neglected or incorrectly performed, which subverts the correct 
application of the theory, and an unnecessary error may be retained or introduced by dimension reduction.  
This is particular true in the IR application and the commonly espoused application of SVD in LSI, so we treat 
this example in detail. 

Normalization in our usage includes demeaning as well as dividing by column or row sums or other 
normalization factors, but should sometimes also include distortion of the original data by the inverse of some 
non-linear distorting process. 

Where different transformations are introduced prior to application of SVD, the interpretation of the noise that 
is eliminated will change correspondingly. We will discuss several different transformations below from other 
perspectives, but at this point we will characterize the effect of subtractive filtering for several methods. 

Simple demeaning has the effect of removing an additive bias and is optimal in the second order sense of 
minimizing the sum of squared error given the distribution is sufficiently normal. The effect and advantages of 
subtracting other measures of central tendency are discussed later, but when applying SVD the arithmetic 
mean must be zero in order for the squared eigenvalues to represent sum of squares error. We will also 
consider below the effect of subtracting the covariance matrix of a noise distribution from the covariance 
matrix of our original data during Factor Analysis.  

In the frequency domain, for example after applying the Fast Fourier Transform (FFT) to a speech signal, 
subtracting a measure of central tendency or a noise distribution corresponds to eliminating background noise 
or an uninformative carrier by eliminating its characteristic signature.  For example, if samples are taken of 
background air-conditioning and computer-noise, this has a characteristic frequency distribution that can be 
directly subtracted.  For speech, centring on the fundamental and normalizing the variance cancels out basic 
frequency characteristics due to sex. If in the frequency domain we take the log and similarly subtract a 
measure of central tendency or a noise distribution, the effect is quite different. In particular for an acoustic 
signal, this approach can cancel out basic convolutive effects due to multiple paths and echo or reverberation. 
These are standard steps in signal/speech processing. 

These last examples illustrate model-based elimination of noise prior to or during the SVD process, whereas 
the previously discussed reduction of the decomposition is hypothesized to eliminate certain kinds of noise 
subsequent to the decomposition and may be model-based (a priori), significance-based (eliminating the least 
significant eigenvectors), accuracy-based (eliminating eigenvectors whose contribution is less than the 
accuracy of calculation), or empirically-based (a posteori elimination of eigenvectors that are associated with 
identifiable sources of error or artefact). 

IDF, TFIDF and Entropy 
We now consider the most common preprocessing technique used in IR, TFIDF (Term Frequency * Inverse 
Document Frequency). There are a number of common variations of TFIDF that relate to smoothing (e.g. 
adding one to all values or to zero frequencies) and normalization (e.g. normalizing TF by the frequency of the 
most common stem in a document rather than the length of the document.  We will ignore these 
considerations, along with stemming, stopping and other processes unique to IR. 

The two basic rates that underlie TFIDF are Term Frequency (TF) and Document Frequency (DF) and are 
expressed relative to a corpus of N documents of average size D, individual size Dd and lexicon size L.  If TCw 
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represents the number of occurrences of a specific term w in the corpus, then TFw = TCw/N is its expected 
relative term frequency and TCwd and TFwd = TCwd·D/Dd represent its count resp. normalized relative term 
frequency in the specific document d with the expected value of TFwd under the assumption Dd=D being TFw 
= ED(TFwd). Similarly if DCw represents the number of documents w occurs in, DFw = DCw/N is its Document 
Frequency.  

Note that TFw and TFwd are both assumed to be rates relative to a typical document of size D and we have 
made explicit an assumption that is both ubiquitous and iniquitous, but typically only implicit, in the IR 
literature – namely that all documents are roughly the same size D. This is clearly not true in most domains, 
but it can be made truer by dividing documents up into segments or contexts of approximately the same size, 
choosing D to represent the typical size for topicality of a term. This may be regarded as an assumption that all 
terms tend to have bursts according to the same probability distribution (again not true), or used to help define 
what we mean by topicality and thus assist in parameterizing a more accurate model of the distribution. 

The Information conveyed by DFw is IDFw = -log2(DFw), the misnamed Inverse Document Frequency, being 
the number of bits required to efficiently represent the fact that term w occurs in a document. This is a useful 
measure in its own right (Sparck-Jones, 1972) has a Bayesian justification as well as the information-theoretic 
motivation given here (Robertson, 2004), and captures the far greater importance of the fact of occurrence in a 
document versus the precise count or (relative) frequency. Note that much of the work using these measures 
assumes Dd ≈ D is (approximately) constant, and several corpora (e.g. Brown, BNC) use extracts of 
(approximately) constant size rather than full documents. It is also misleading to think of documents as being 
about various topics, as different parts of a document may touch on, or even spend considerable time on a 
topic and then move on to another, thus it can be useful to talk about contexts rather than documents, and these 
cannot in general be assumed to be of constant size either. We can however select extracts of constant size that 
relate to a specific topic. 

We define TFIDFwd as TFwd*IDFw. As an entropy estimate this represents the contribution of word w to the 
size of the document when each occurrence is represented in IDFw bits, but this is not an efficient 
representation given words actually tend to occur much more than once in the documents they occur in. Thus 
it is somewhat surprising that TFIDF should for so long have been regarded (and empirically demonstrated) as 
superior to all other tested weighting schemes (Aizawa, 2003; Robertson, 2004). 

The K-mixture and an improved entropy estimate 
Church & Gale (1995), pre-empting Katz (1996), proposed a model dealing with both the probability a 
document was a relevant context for a word (α) and the rate of occurrence of a term in a relevant context (β). 
This formulation of the Katz model, the K-mixture, represents the probability of a term occurring k times in a 
document as  

Pw(k) = (1–α) 0k + (α/[β+1]) (β/[β+1])k     where 0k is 1 if k=0 and otherwise 0. (25) 

Setting the parameters α and β for a term w may be done empirically, but it is usual to relate them to TF and 
DF.  The rate of occurrence of a term w in a relevant context (β) may be estimated from the rate of occurrence 
in documents in which it is known to occur (γ = TFw/DFw), but γ would be a significant overestimate for β 
since these contexts already are known to contain one occurrence.  Thus it is usual to set β = γ-1, however this 
now probably underestimates β as the context is reduced by one word and there is usually a minimum distance 
before a term recurs. According to this definition, β is set from the rate of additional occurrence in documents 
the term is known to occur in (β = [TFw- DFw]/DFw). We may now note that Pw(0) = DF is the probability of a 
null context and the sum of the independent cases of irrelevant contexts and null relevant contexts, from which 
we can show that α = TFw/β. 

Note that Equation 25 uses γ as a denominator discounting both α and β, and the corresponding terms η = 
(α/[β+1]) and δ = (β/[β+1]) = [TFw – DFw]/TFw both have intuitive interpretations with η being the rate of 
occurrence of relevant contexts with no occurrences of the term (seen by setting k=0) and δ being the 
probability of an (additional) occurrence in a relevant document (seen by setting k=k+1). The function of γ 
here can also be understood in terms of a change from average rates in terms of documents to average rates in 
terms of individual words. 
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Note that the rate of occurrence of a relevant context (α) may be estimated from the rate of occurrence of 
documents containing the term (DFw), although this again would be an underestimate as there are in general 
relevant documents in which the term could be expected to occur but it does not (perhaps a synonym is used).  
The correction factor is the ratio of all relevant contexts to non-null contexts which is equivalent to the ratio of 
all occurrences to extra occurrences, 1/δ – as the rate of extra occurrences is assumed to be the same in a 
relevant context irrespective of whether it is non-null or null (viz. whether or not w actually occurs in that 
context).  

We now re-express the K-mixture (25) as the more compact P-mixture (26) which is parameterized directly by 
two probabilities, showing the interrelationships compactly in terms of the derived rates and their 
interpretations as probabilities and expectations.  Note that α is expressed as the sum of the geometric 
progression formed by the second term of the mixture summed over all k. Similarly β and β+1=γ, which are 
expectations rather than probabilities, are eschewed in this formulation in favour of (conditional and joint) 
probabilities δ, ε and η, allowing the P-mixture formula and other identities to be verified directly by 
multiplication of probabilities and conditional probabilities or expectations. 

Identities 27 to 35 relate to the usual parameterization of the K-mixture known as the Katz model.  We 
emphasize the pivotal role in the mixtures of the ratio γ (the expected number of occurrences of w in a D-term 
context that is known to contain w).  The ratio β (the expected number of occurrences of w in a D-term 
context that is known to be relevant to w) and the normalized ratio δ (the estimated probability of an 
occurrence of w in a D-term context that is known to be relevant to w) depend solely on γ. The reciprocal of γ, 
the ratio ε, is directly interpretable as the probability of non-occurrence in a relevant context and is thus 
preferred. ζ is introduced (32) as the solution of the quadratic that shows how we can derive γ from TFw and η, 
and takes on the pivotal role in an improved parameterization we introduce subsequently. λ and µ (33 & 34) 
are conventionally used in Poisson models based on term frequency and document frequency, but we discount 
these by β to derive probabilities α and η resp. 

Assumptions. We make explicit the assumption of the K-mixture that documents may be approximated as 
being of fixed size D that represents the expected scope of relevance of a term. D is typically regarded as 
being of the order 200 to 500 tokens or 1000 to 2000 words. According to Zipf’s law the top 150 words 
accounts for 50% of the tokens in a corpus, and these are largely grammatical function words (closed class 
words).  In addition at least 50% of the so-called content words (open class words) are also very general 
(generic) and this leaves 20 to 25% of tokens as topical terms. Thus we prefer to refer to D-term contexts, 
rather than documents, to emphasize that relevance (topicality) is local, that the probability PD depends on D, 
and that the large D assumption behind a Poisson distribution does not apply in a D-term context.  
We also make explicit the assumption that the fact that a document d contains a term w implies that w is 
relevant to d (but not vice-versa), express this as d ∋ w → d Я w, and generally omit d Я w (relevant for) 
when it is implied by d ∋ w (contains). 

Pw(k) ≡ (1–α)0k + α[1–δ]δk = (1–α)0k + ηδk = (1–η/ε)0k + η(1–ε)k (26) 

α ≡ λ / β = µ / δ = η / ε  = γη = µ + η = PD(d Я w) (27) 

β ≡ γ – 1 = ζ – ½ = [λ–µ] / µ = µ / η = δ/[1–δ] = ED(TFwd | d Я w) (28) 

γ ≡ β + 1 = ζ + ½ = λ / µ = α / η = 1/[1–δ] = ED(TFwd | d ∋ w) (29) 

δ ≡ [ζ–½] / [ ζ+½] = µ / α = β / γ = βε = 1 – ε = [λ–µ] / λ = PD(d ∋ w | d Я w) (30) 

ε ≡ 1 / γ = 1 – δ = µ / λ = PD(d ∌ w | d Я w)  (31) 

ζ ≡ [λ/η + ¼]½  = γ – ½ = β + ½     (32) 

η ≡ µ / β = α / γ = αε = α[1–δ] = PD(d ∌ w & d Я w) (33) 

λ ≡ TFw = αβ = γµ = αγδ = βγη = ED(TFwd) (34) 

µ ≡ DFw = αδ = βη = αβ/γ = αβ[1–δ] = αβε = PD(d ∋ w) = PD(d ∋ w & d Я w)) (35) 

An improved term entropy estimate based on the above assumptions and model may thus be defined (36), 
noting that the model is defined by any two of the mutually independent parameters (viz. at most one of the 
pairwise dependent β, γ, δ, ε and ζ). 
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TEwd = -log(Pw(TFwd)) = -log(δ)*TFwd –log(η) = -log(DFw/α)*TFwd –log(DFw/β)  (36) 

Rearranging, TEwd may be viewed as a combination of the simple TFIDF and IDF models, or a smoother ‘add 
one’ TFIDF model, with the subtraction of redundant information as revealed by a simple ITF model, since 
IDF ignores extra occurrences of w and ITF models the overestimated entropy of the expected β extra 
occurrences of w amongst the λ=TFw occurrences treated as introducing new relevant contexts (37 & 38).   

TEwd = TFwd*IDFw  + IDFw – ITFw = (TFwd+1)*IDFw – ITFw (37) 

ITFw = -log(β) – TFw*log(α) = -log(ν)                    where ν = βαλ (38) 

There is however some fine tuning that will performed later when we present our parameterization models – in 
particular TEwd is not well defined in the K-mixture when TFw = DFw (e.g. at most one occurrence of word w 
in any document).  

Note that there are many different notations used for the probabilities and expected values discussed here, that 
statisticians tend to use the term frequency to indicate a count irrespective of the total sample or corpus size, 
where as in natural language processing we are more interested in the stricter definition of frequency as a rate 
of occurrence relative to some specific sample size or time period, and in particular in the above discussion we 
use frequency relative to some known number of words or a specific average document size – in statistics, this 
usage is referred to as relative frequency. Counts are not interpretable without knowledge of the sample size or 
time period.  The average interval between occurrences, which corresponds to wavelength in the time domain, 
is also a useful scale that will be discussed later.  

Furthermore, the presentation by Church & Gale (1995) of Katz’s K-mixture pre-empts the publication in the 
same journal of Katz’s (1996) account of his model, and the specific notation and formulation of the models 
are quite different in the two papers.  The K-mixture is presented as an additive model in which two 
components contribute to the probability estimate for documents that do not contain a term. However, the 
corresponding model of Katz (1996) is a two parameter variant, G′, of a more general three parameter model, 
G, that has only one term applicable to any specific term frequency. In fact, G′ and G=G″ can be considered as 
first order and second order variants (resp.) of a more general model extending the straightforward zeroth 
order model, Gº, that depends only on the mean document frequency µ=DFw. 

The following presents this model in a form that use the constructive notation proposed in Katz (1996) but 
deliberately eschews the adoption of the Greek letters used by him in his preferred presentation form, as they 
differ from those used above based on the usage of Church & Gale (1995).  The first concept introduced by 
Katz is Burstiness, Bm = Ew(k | k≥m), with B0 corresponding to the distribution mean, B1 to average burstiness 
(before topicality is established), and B2 to topical burstiness (in model G, two occurrences are necessary and 
sufficient to establish topicality): 

Bm ≡ ∑r≥m Pw(r) r / ∑r≥mPw(r) (Katz,p28) (39) 

Katz defines Pm = Ew(k+1|k,k≥m) as the average conditional probability of additional occurrences after seeing 
at least m, being the ratio of repeats to opportunities: 

Pm ≡ ∑r≥m Pw(r) (r – m) / ∑r≥m Pw(r) (r – (m–1)) = 1 – 1 / [Bm – (m–1)] (Katz,p38) (40) 

A model of order m is defined as having a conditional probability of repeat occurrence that is independent of 
the number k of previously observed occurrences once the burst size is at least m. In this model Pw(k+1|k, 
k≥m) = Cm is assumed to be a constant independent of k for all k≥m in a model of order m, and thus the 
average of all such constant conditional probabilities Cm = Pm = Pk for all k≥m: 

Cm ≡ ∑r>k≥mPw(r) / ∑r≥k≥mPw(r) = Pm  (cf. Katz, pp38 & 43) (41) 

The model order m thus corresponds to the assumption Pm ≈ Pk for all k≥m and allows us to define Pw(k) for 
these models as 

Gº  : (1–P0)P0
k (42) 

G′   : (1–P0)0k + P0(1–P1)P1
k-1[1–0k] (Katz,p42) (43) 

G″  : (1–P0)0k + P0(1–P1)0k-1 + P0P1(1–P2)P2
k-2[1–0k–0k-1]  (Katz,p39) (44) 

G{m} : ∑j<m 0k-j (1–Pj)∏i<j Pi  + [1–∑j<m 0k-j] (1–Pm)Pm
k-m ∏i<m Pi (45) 
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An generalized term entropy for k = TFwd based on the this generalized Katzian G{m} model may thus be 
defined as 

–∑j<m 0k-j log(1–Pj)+∑i<j logPi  – [1–∑j<m 0k-j][log(1–Pm)+(k-m)logPm+∑i<m logPi] (46) 

These order m models essentially treat the j<m cases individually, and define the j≥m cases as if δ = δm = Pm ≈ 
Cm was defined by an order 1 model (G′ or K-) employing a membership threshold of m. Relating these 
parameters to the Greek parameters used earlier, we get  

P0 ≡ µ = DFw; P1 ≡ δ1 ≡ δ; Pk ≡ δk (47) 

where these Pj values may be empirically calculated using (39 or 40), or estimated for k≤m or k=m using (41) 
for a smoother model and/or a more accurate tail.  Simplifying and taking advantage of the exponential 
Kronecker forms, we get probabilities for k  

∑j≤m δi<j≤m (1–δj) δk,j≤m             where   δi<j≤m ≡ ∏i<j δi ;  δk,j<m ≡ 0k-j ;  δk,j=m ≡ δm
k-j (48) 

Note that these forms are less convenient than the K-mixture and P-mixture due to the Kronecker terms δk,j<m 
= 0k-j that appear for k>0 in this formulation, but are avoided in the previously given mixtures (we are not 
concerned with the k=0 case documents that omit the term). Nonetheless, we find this new notation both 
elegant and intuitive as we see that the higher order model is a smoothing model using a mixture of elementary 
models of different orders where δ terms for component models of lower order j<m reflect a probability of 
contribution 0 to higher or lower orders, whilst the δ term matching the model order j=m reflects a probability 
of Pm for each successive term above the model order. This convenience is also observed in the P-mixture 
(26). 

Katz (1996) has verified that the G-model performs considerably better than several lower order models 
including G′ and Church and Gale (1995) have similarly demonstrated the competitiveness of G′ in the form of 
their K-mixture, albeit validating on the training data in both cases rather than on independent data.  A number 
of other researchers have used the technique or the concept of burstiness (Umemura et al., 2001) in various 
applications and have found it effective, although it tends to be the K-mixture form that is used even when 
only Katz (1996) is cited (e.g. Gao et al., 1997, 2000). 

The scope of demeaning and normalization 
There is however a prior question relating to demeaning that we will pick up here – how should normalize 
your data.  The first aspect is whether you demean, by row or  by column, over the entire matrix or by both 
rows and columns successively?  These are four distinct possibilities (really five but two are mathematically 
equivalent, but will have different errors introduced numerically).   The second aspect concerns whether you 
should scale the data, and a similar set of choices are available. 

Demeaning is recommended, it is technically incorrect to apply SVD without it and it reduces the compression 
error.  While technically demeaning should be done for the vectors in focus, in practise we would like to 
consider both interpretations of the data and a similar error reduction is achieved either way – we will call this 
orthogonal demeaning and it may in certain cases be more convenient. Double demeaning (vector and 
orthogonal successively) reduces the error further and while theoretically less justifiable it may be useful if it 
is desirable to reduce the error due to compression, and/or if the dual interpretation is also useful.  Matrix 
demeaning involves subtracting the mean of the entire matrix from all entries and does not achieve any useful 
effect in general, achieving a fairly meaningless translation in both primary and dual spaces.  

The correct normalization for AAT to be a covariance matrix is demeaning by row, since we are treating A as a 
set of row vectors. More importantly this is appropriate if we are analysing, clustering or visualizing row 
vectors, e.g. each row describes a document in terms of the words contained in it, in typical IR usage, and we 
are interested in the relationships between documents rather than between words.  For ATA to be a covariance 
matrix we should demean by column, and this is appropriate if we are dealing with the column vectors, which 
corresponds to us being more interested in the relationship between words than documents.   

The minimal normalization for AAT or ATA to be a covariance matrix is thus demeaning, but this reduces the 
degrees of freedom for the vectors by one (this reduces the rank by one if A is square or we demeaned along 
the shorter dimension).  Following up with standardization of A by dividing by the corresponding (row or 
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column) standard deviation means AAT or ATA is a correlation matrix, whilst the more usual normalization to 
unit vectors (sum of squares 1) maps vectors to the unit hypersphere.   

Undemeaned L1 normalization (normalizing the sum of magnitudes to be 1) by row or column without 
demeaning gives rise to conditional probabilities in the case of frequency data. However L1 normalization 
with or without demeaning is arguably inappropriate for SVD processing which is based on minimizing sum 
of squares error. Furthermore, L1 normalization after demeaning no longer admits a probabilistic 
interpretation. 

L1 normalization of an entire undemeaned frequency matrix (so the sum of all elements is 1) gives rise to 
probabilities, but normalization of the entire matrix (L1 or L2) is usually of little value as biases such as 
document size are preserved. 
This leaves the double normalization, where we normalize the rows then the columns. Demeaning by row 
means all rows now sum to zero and have zero mean.  Thus following up by demeaning the columns means 
we are subtracting a row of columns means with zero row mean from each row, so the row mean remains zero.  
Thus this procedure, or its column then row converse, lead to a matrix that has zero mean for all rows and 
columns, and formally the two approaches are equivalent.   
Geometrically if the data is considered as a NxM matrix of N M-dimensional row vectors, demeaning by rows 
translates so the centroid is at the origin, and distances of the vectors from the origin (length) reflect variance. 
Demeaning by columns projects onto hyperplane Σi xj = 0, and the vectors reflect dissimilarity of the attribute 
dimensions.  L2-normalization of N vectors by scaling to unit variance or unit hypersphere means the sum of 
squares adds to N (naïve sample variance), N-1 (unbiased sample variance) or 1, but in any case that the 
vectors lie on the surface of a hypersphere.  Each of these three steps, individually or together, costs a degree 
of freedom in the data, although L2-normalization is not linearly resolvable so does not affect rank (except to 
the extent it approximates L1-normalization).  
Moverover, note that L1-normalization of non-negative attributes (e.g. frequency data to probabilities) projects 
them onto the hyperplane Σi xi = 1 so that subsequent demeaning by columns does not cost an additional 
degree of freedom but represents a simple translation to Σi xj = 0. On the other hand, L1-normalization after 
orthogonal demeaning does still lose the third degree of freedom. Since L1-normalization sets the row sum to 
1, the row sum of the mean vector (centroid) is also 1 and standard vector demeaning following L1-
normalization obviates any need for orthogonal demeaning since the row mean sum of 1 is subtracted off each 
row sum of 1 giving a row mean of 0. 
It is not possible in general to simply scale both columns and rows simultaneously to achieve L1 or L2 
normalization, though in fact that effect is achieved by the SVD rotation and scaling process since the original 
square versions of both U and V are L2 normalized by both row and column.  A normalization by scaling row 
then column versus column then row is generally quite different and the last normalization therefore should 
correspond to the vector normalization required for subsequent processing. However, the empirical 
investigation of Powers (1997) found the double normalization and the matrix normalization gave no 
advantage or made things worse: on average it reduced the performance achievable in subsequent clustering. 
On the other hand, the study showed that L1 vector normalization helped more than any other normalization 
(in this case frequency data was used and it factored out the size of the document), but L2 vector 
normalization was second best (it also helped with size). 

Our conclusion is that the double demeaning is potentially useful as in general it reduces the sum of squares 
variance represented by the S matrix of the SVD over what is achieved by either column or row demeaning 
alone, it is theoretically insensitive to the order in which it is performed, and it means that the SVD analysis 
may be interpreted validly for both columns and rows.  

Vector normalization by linear scaling may be helpful if size is not regarded as a desirable factor, and indeed 
the principal eigenvector will generally correspond to size (and thus not be useful) if this normalization is not 
performed. However, after normalization one of the largest eigenvalues may still correspond to a size-
correlated eigenvector (in IR this is largely due to the different lexicon sizes of large and small documents – 
compare a dictionary or an encyclopaedia to a personal home page or a newsgroup submission). 

Geometrically L2 normalization after demeaning places vectors on the unit hypersphere (circle in 2D; sphere 
in 3D) around the origin, whilst L1 normalization places vectors on a unit hyperhedron (diamond in 2D; 
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octahedron in 3D). L2 normalization is more appropriate for a subsequent SVD processing step with its second 
order nature and is thus a reasonable postdemeaning normalization step, whilst L1 is the best way to normalize 
for size and is a highly appropriate predemeaning step but is in the IR context is unnecessary if documents are 
constrained to be the same size.  However, for IR with unconstrained document size, the following steps are 
recommended: 

1. L1-normalization of vectors (map to conditional probabilities, reducing freedoms) 

2a Optional non-linear transformation of vectors (e.g. map to conditional information) 

2b Optional orthogonal demeaning (translate by ∆xi = –1/M from Σi xi = 1 to Σi xi = 0) 

3. Vector demeaning (mapping centroid vector to the origin, reducing freedoms). 

Note that as discussed above demeaning step 2b is not required after L1-normalization unless a non-linear 
transformation at step 2a undoes the L1-normalization, as vector demeaning will also achieve orthogonal 
demeaning. Double demeaning (explicit or implicit) will reduce the error of SVD-reduction. In order for this 
sequence not to hide error we implicitly assume that the size information lost in step 1 is not directly 
informative (size of document does not provide information about what the document is about) and similarly 
that step 2 is information preserving. This is automatically so for transformations that are reversible, as is the 
case for 2b. This is also the case for 2a if monotonic functions are used. Given data is strictly positive logx, 
tanx, tanhx or xk are all possibilities, but the >0 condition need not obtain and indeed in IR matrices are usually 
sparse in violation of this condition.  This would thus appear to exclude direct application of log, which is 
unfortunate as translation to the information domain would appear to be semantically advantageous (as we feel 
proportional increases in frequency are equivalent) whilst preserving sparsity is computationally advantageous 
(in terms of both time and memory). 

Postnormalization (after step 3) is not recommended as it will destroy the double demeaning.  This includes 
standardization (so that ATA is a correlation matrix, as commonly performed in ICA algorithms) and any other 
form of L2 normalization in particular (and in general any transformation that is non-linear for either rows or 
columns) means that the loss of degrees of freedom is no longer reflected in rank. 

Recall that the SVD process produces two orthonormal matrices, before reduction. Even after rank reduction 
the column vectors are effectively L2-normalized and orthogonalized, but the row vectors are shorter in 
proportion to the squareroot of the reduction in rank – with rank reduction from N to K, length is √(K/N). 
With lossy compression the shortening is given by the foreshortening due to the magnitudes of the 
components in the ignored dimensions, viz. 1 – √(Σixi). 

Renormalization is thus not desirable for purposes of 2D visualization or other lossy reduction paradigms, as 
the length of the vectors (distance from centre) is indicative of the information that is present in 
unshown/unretained dimensions.  For purposes of comparison (distance or similarity measures) in the absence 
of lossy reduction, renormalization is unnecessary as it remains L2-normalized.  

In this context, dot product corresponds to D2=cos(θ) where θ is the angle between vectors, varying from +1 
for positively correlated through 0 for uncorrelated to –1 for negatively correlated (as θ goes from 0 to π/2 to 
π), and Euclidean distance corresponds to L2=2sin(θ/2), varying from 0 for identity to 2 for diametrically 
opposite (as θ/2 goes from 0 to π/2). Note that θ is itself a linear distance measure whilst dot product and 
Euclidean distance represent non-linear (inverted sigmoid and half-sigmoid) distortions of θ. Furthermore, L2 
= (2–2D2)1/2 and D2 = 1 – L22/2. The Manhattan distance, L1, the Canberra distance and other variants of the 
Minkowski metrics, Lp p≠2, are not rotation invariant and hence particularly inappropriate in conjunction with 
SVD. ICA as an alternative to SVD represents a further rotation and thus is pointless if rotation invariant 
distance measures are used, unless it is used to identify and eliminate irrelevant dimensions (as a form of lossy 
compression designed to lose noise rather than information). 

The sparsity preserving log transformation (splog)  
We noted above in several places that demeaning should be performed before SVD, but often is not, 
particularly in the context of LSI. The mean represents the best fit in a sum of squares sense and so the sum of 
squares is not minimized if the mean is not zero, and the squared eigenvalues are not interpretable as 
variances.  Thus in order for the error resulting from lossy reduction to be minimized it is necessary to 
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demean, and the error introduced by the dimension reduction will tend to be doubled for LSI, since it will be 
biased by the mean, and the IR frequencies may be modelled in terms of a Poisson distributions for which the 
mean and variance are equal. 

So this raises the question of why demeaning is not performed.  In some cases, it is simply ignorance of the 
importance of this step in what has become a black box technique.  However, in the case of LSI we are dealing 
with term frequencies that are zero for most terms given a document, and for most documents given a term.  In 
the case of terms, there will typically be at least a 1000 times more zeros than occurrences for any document.  
In the case of documents, the factor is similarly high for all terms once the frequent closed class lexical items 
have been excluded as stop words. The overall sparsity reflects the average sparsity of both document and 
term vectors, and is lost if we demean either document or term vectors as the nulls now all become –mean, and 
they cannot meaningfully be left at zero . 

However, if we take the log (or –log) of the non-zero values and move to the information domain, the 
arithmetic mean in this information domain represents the geometric mean in the original frequency domain, 
and this is also a valid measure of central tendency that we will discuss in more detail below. We will assume 
we are treating document signatures, as in IR/LSI, rather than the word signatures, as in other applications 
such as word sense disambiguation (WSD). Thus we will subtract the mean term information in relation to the 
non-zero terms of each document, but in this case we will argue that we can reasonably leave the zero entries 
at zero. 

Demeaning in the information domain gives a balanced spread around an expected information of zero 
(frequency equals expected frequency and the log of their ratio is 0) so that the null documents (those in which 
the frequency was zero) can remain at zero (0 frequency equals 0 expected frequency) for no information gain 
or loss.  Positive figures correspond to the document's information gain for the word: higher occurrences mean 
less information is gained by being told a word in the document is the target, reflecting the fact that the 
document has more information about this word.  Negative figures correspond to information loss which tends 
to be spread over many words as, except for the excluded closed class words and a few other instances of 
similar generality, words other than the topical words will occur less often than usual in the document simply 
because they are not the topic and are being displaced by topic-relevant words. 

Note that the expected count for a term in an irrelevant document is close to zero and is much less than the 
expected count in a relevant document (and indeed we have assumed that the occurrence of a word defines a 
document as relevant). For terms that do not occur in a document, that we ignored in taking the log and the 
mean above, we note that since we know there a 0 occurrences of the term, 0 is arguably the expected number 
of occurrences in the document, and so there is no deviation from this expectation and hence no information 
gain or loss.  The demeaning model based on this argument we will call splog0. This is simplistic and we will 
shortly analyze the error introduced by these assumptions about demeaning and the fact that we are essentially 
demeaning two subsets of the documents separately. 

Scales and distortions 
We noted earlier that sometimes it is appropriate to normalize using some non-linear processing step. In fact, 
the difference between SVD and higher order ICA can largely be understood in terms of ICA matching a 
sigmoid to the cumulative distribution function of the data (the probability of a value being less than or equal 
to k, being the sum up to k of the probabilities for discrete possibilities i, or the integral up to k of a continuous 
probability distribution function p(i)). 

We have now seen some applications of the non-linear logarithmic distortion, which has raised the question of 
whether this is a good thing from various perspectives. 

In general statistical analyses are based on specific assumptions and these include assumptions about the scale 
of measurement. For example, it only makes sense to add values that are measured on an equal interval scale.  
In the case of frequency, our intuition is that adding one extra occurrence of a term to a document with one 
occurrence is far more significant than adding it to a document with a thousand occurrences.  Thus we think 
that it is the percentage increase that is important.  Taking the logarithm means that variations by the same 
percentage are shifted by equal intervals, and this is part of the value of the concept of information. 
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Another useful assumption that can be made about scales is that there is an absolute zero and it makes no 
sense to have values less than zero – only in such a scale does it make sense to talk about ratios, something 
being twice something else, for example.  For this reason, absolute scales are also known as ratio scales. The 
ratio scale property holds for measurements of size or interval, but is not true for measurement of location. In 
the IR application, zero frequency of a term and zero interval between occurrences of a term both thus delimit 
absolute measurement scales.  Note that frequency and wavelength have a reciprocal relation, and so do 
frequency and interval. Both average interval and probability can be seen as being derived from frequency, but 
equally well frequency could be regarded as being derived from an underlying probability distribution or an 
underlying repetition interval (buses are due every 15 minutes => 4 per hour => a 1/15 probability of a bus 
arriving during any particular minute).  The Poisson distribution actually derives from this idea of the expected 
interval to the next occurrence, noting that it cannot be smaller than zero as that would mean the latest bus 
arrived before the last bus, which is a contradiction. 

Zipf’s Law tells us that if we order the events (e.g. occurrence of terms) by their probability and number the 
most frequent term (1) to the least frequent term (L), this rank is inversely proportional to the frequency, or 
directly proportional to the interval.  Taking the rank is a standard statistical technique used when the data 
does not obey the assumptions of the paradigm used and so parametric techniques are not appropriate. After 
taking the rank we end up with an absolute equal interval scale and we can now use techniques that make such 
assumptions, the composite approach of taking the rank and using a parametric method being a non-parametric 
method that does not require these assumptions about the underlying distribution. 

Frequency and probability do not obey the appropriate assumptions for the usual statistical methods, but 
taking rank, reciprocal or logarithm achieves an absolute equal interval scale, otherwise known as a ratio scale. 
Empirically, in many language-based applications better results tend to be achieved with one of these scales 
than with the raw frequency or probability scales (see e.g. [Powe97]). 

Note that the normalization of frequencies to probabilities or conditional properties is identical with L1–
normalization on a matrix or vector (divide by the sum of magnitudes, before or after demeaning) but is 
undone by the L2-normalization appropriate to and performed by SVD (divide by the sum of squared 
magnitudes, recalling that the U and V matrices are L2-normalized). These are linear normalizations which we 
distinguish from the non-linear distortions represented by reciprocal and logarithm.  Visually a good 
representation, with an intuitively plausible equal interval scale, has a very even spread of points.  A poor 
representation will tend to be more or less dense around the mean and will lead to the development of 
inappropriate clusters.  

Taking the logarithm fits our intuition about ratios being important at the level of frequency as well as our 
intuition that information should be represented in bits (or related units such as nits or digits where natural or 
decimal logarithm are used rather than the usual binary logarithm). 

Taking the reciprocal or the rank fits the Zipfian model and evenly spreads out the words according to their 
characteristic frequency (either in the corpus or in a document). 

The choice of distortion will in general affect the results. For example in [Powe97], the rank distortion tended 
to be the most robust, finding the expected vowel class, with y as a possible inclusion, whilst the logarithmic 
distortion tended to class space as a possible vowel (with or without identifying the vowel class in its own 
right). On the other hand, the reciprocal distortion (despite its Zipfian similarity to rank) was not very 
successful at finding the vowel class. 

In the IR application, one of the prime goals is correct ranking of documents relevant to a query, and pre-
ranking of the terms has also proven to be a useful step in preliminary explorations of its utility in clustering.  
The TFIDF processing step discussed above, and the subsequent Katzian modification, both make use of a 
logarithmic distortion into the information domain. These distortions should really be understood in the 
etymologically accurate sense of untwisting the data in a way that removes unhelpful biases. 

The unexpected value 
We now return to consider in more detail our observation that the proposed sparsity preserving method of 
demeaning in log space (splog) effectively treats the original geometric mean as the measure of central 
tendency.  We also note that the existence of the various alternatives is evidence that other measures are at 
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times more useful, and in particular we note that the geometric mean is appropriate where a logarithmic 
distortion gives the required scale, and similarly the harmonic means is appropriate where a reciprocal 
distortion gives the required scale, and the respective distortions map these means to the arithmetic means 
required in the distorted space. 

In clustering, to give a specific example, we note the existence of variant algorithms, e.g. K-medians versus K-
means, K-harmonic-means, K-geometric-means and the various density-weighted K-means algorithms, all of 
which can be interpreted as targeting the underlying probability distributions/densities and represent the 
cancelling of a bias by explicit (e.g. harmonic/geometric variants) or implicit (weighted variants) application 
of a distortion function. However, if we applied an appropriate distortion up front, a simple K-means would 
give equivalent performance to the harmonic and geometric variants.  The case for the weighted K-means 
algorithms is a little different as some are designed to still find the underlying clusters based on arithmetic 
means but are concerned about the distribution from the perspective of sampling (e.g. increasing weight of low 
cardinality clusters in conformance to Zipf’s law). 

Thus seeing a problem with the change in the referent of an expected value as a problem makes the 
assumption that frequency or probability is the correct thing to measure, whilst in fact rank, reciprocal and log 
are arguably more appropriate on various statistical and intuitional grounds. Furthermore, taking the mean of 
the logs centres around the arithmetic mean as technically required for our various matrices to be interpreted 
as covariance matrices, and in fact the reason the arithmetic mean or expected value is preferred in statistics is 
largely the second order error-minimization property that applies after normalization. 

A particular consequence of the methodology proposed is that the null documents are shifted relative to the 
non-null documents as sparsity is retained by keeping them at zero.  An alternative approach would be to 
subtract the log of the mean rather than the mean of the log, but this no longer represent the second order 
optimum in terms of minimizing SSE. These two models correspond to normalizing respectively the 
arithmetic mean or the geometric mean to one in the original frequency space. We now analyze and compare 
the two models and argue that the standard model where we apply the distortion and demean is indeed 
preferable, but that there are also modifications that may be useful. 

The discrepancy is the same either way, but affects different subsets of the data and in this case corresponds to 
Information Bias whilst more generally it could be called Functional Discrepancy on the basis that after 
applying the function the expected value (statistically) is not the expected value (semantically). 

So let us consider the properties of various measures of central tendency. 

The arithmetic mean is only the expected value in the semantic sense under specific conditions, e.g. 

1. An aggregate of random variables and the central limit theorem applies; 

2. A word’s frequency or probability or occurrence intervals for an ergodic source. 

In both these cases the term ‘expected value’ means something and it is actually the value you expect by dint 
of the stated assumption (e.g. the larger the interval the more likely the frequency will correspond). However, 
the ergodicity requirement says that any large enough sample should be representative of the whole, whilst we 
have actually shown a better model is that there are relevant and irrelevant contexts that demonstrate quite 
different distributions, and the log-demeaning process deals with these separately.  Although in a document or 
sample of size D words, both p = f/D, the mean frequency per token, and I = D/f, the mean interval between 
occurrences are arithmetic means, arithmetic averages of these over different words does not give compatible 
results = the arithmetic mean interval for a set of words is actually the reciprocal of the harmonic mean 
frequency for that set of words – the arithmetic mean is not appropriate for combining frequencies or 
probabilities of different words if it is actually the interval that is important, and it would seem that 
psychologically and linguistically our cognitive limitations determine that we should get reminded 
periodically what the topic is by reusing the word explicitly rather than anaphorically, and that refreshing will 
be required after a certain interval has passed. 

There are many cases where the expected value is not semantically interpretable as such, e.g. 

3. The random variable represents labels rather than measurements (e.g. a dice) 

4. A variable with a semantic expected value is nonlinearly distorted (e.g. log, recip.) 
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There are also other measures of central tendency that are used in statistics, and these come into play here as 
we consider the significance of the functional discrepancy between E(f(X)) and f(E(X)). We have also 
discovered another measure of central tendency, the entropy norm κ that is implied by the term entropy we 
derived from the K-mixture and P-mixture and justified in terms of balancing information about the document 
as measured by the fact of occurrence and the number of occurrences. 

If we have a normal distribution, then the median, mode and arithmetic mean coincide.  As the weight of the 
distribution is close around these values there is little opportunity for functional discrepancy – and this is 
increasingly the case for larger N and tighter distributions. 

Returning to the specific functional discrepancy in moving from probability space to information space using 
the log function, and considering the relationship between the arithmetic and geometric means of the 
underlying frequency data, we note that the geometric mean is more sensitive to low outliers (esp. 0, which we 
however discount by taking means only over documents containing the target word) and less sensitive to high 
outliers (which is often regarded as a good thing as these are unbounded). 

Considering the binary case for non-negative values (frequencies) a and b, 

am(a,b) = half(a+b) >= sqrt(a*b) = gm(a,b),  (49) 

with equality holding only when a=b. 

The functional discrepancy thus relates to the variance, and noting that a and b both differ from the arithmetic 
mean by dev(a,b)=abs(a-b)/2 we see that the variance represents the deviation between the squares of the 
arithmetic and geometric means. 

var(a,b) = dev(sqr(am(a,b)),sqr(gm(a,b)) (50) 

This relationship of functional discrepancy, fd, to variance immediately leads to some understanding of the 
extent of the fd for different possible distributions. For a Poisson distribution applicable to our hits (the 
documents containing the target term) we have 

am(a,b) = var(a,b) (51) 

The P-mixture essentially defines two probabilities in our model of word occurrence in documents (and 
implicitly assumes documents of equal size D). These can be characterized as the probability of a relevant 
context (α) and the probability of an additional occurrence in such a relevant context (δ) – it allows for zero 
occurrences in a relevant context and models relevance separately. 

As we are processing only non-null contexts, and for now treat relevant contexts as being the hits for a word, 
we simply use a Poisson distribution to model occurrences. The Poisson model predicts the probability of a 
document of size N (N large and hence omitted) containing n occurrences of w when the expected number of 
occurrences is m as 

Pm(n) = mn / em / n! (52) 

Since we know the document contains an instance of w, we used formula 30 to predict additional occurrences, 
and investigated the relationship of the median, mode and arithmetic and geometric means computationally 
using this model, showing that the Poisson model with an overall the number of occurrences n is characterized 
by 

median: n 
mode: n 
geometric mean: n+0.5 (53) 
arithmetic mean: n+1.0 

Our original observation was that a sparsity-preserving demeaning of the logarithm reflected the log of the 
geometric mean of the data, and that the arithmetic mean in the log-normalized space allowed proper 
interpretation in correlation and SVD processing. We showed that seeing zero probability as a limit, nulls 
correspond to the geometric mean of the original data for both non-null and null cases. In this model the 
transformation actually potentially increases sparsity as the nulls stay at zero and any documents matching 
corpus level expectations become additional zeros.  This corresponds to the standard approach to distortion 
and demeaning [Powe97]. 
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The alternative approach of subtracting the log of the arithmetic mean puts the zeros at the values 
corresponding to the arithmetic mean of the original data and ensures that nulls correspond to the arithmetic 
mean of the original data for both non-null and null cases.  This is motivated by the traditional view that the 
arithmetic mean represents the expected value of the data, but then the log-distorted version is not properly 
demeaned and thus the correlations and SVD reductions have parametric error introduced into them. 

Moreover, since mode represents the salient value in the distribution and the most probable prototype, it is 
possible to argue that this is a more plausible measure of central tendency and hence the closer geometric 
mean (expected displacement of 0.5) is more appropriate than the arithmetic mean (expected displacement of 
1.0).  Also note that the document groups around the mode and the median are unchanged by the application 
of any monotonic distortion, but that the arithmetic mean now identifies documents that were formerly 
identified with the geometric mean rather than the arithmetic mean, so both of these are less resilient than 
mode and median.  Furthermore, if the logarithmic (information or information gain) space is meaningful, and 
we have argued that intuitively it is an equal interval scale, then its mean is reasonable to use too. Also note 
that information is an absolute scale with an absolute zero (achieved at probability 1). Moreover the magnitude 
of the information deviation is also an absolute scale with zero indicating a totally unsurprising outcome, a 
non-zero magnitude specifying the minimum description length for the deviation from expectation, with the 
sign being an additional bit that indicates a direction in the sense of gain or loss.  Thus information deviation is 
also an absolute ratio scale notwithstanding the availability of the sign. 

Katzian analysis of sparsity preserving log model 
The first observation regarding the simple splog model is that it does not distinguish between the case where a 
word only ever occurs a single time in a relevant document (or more generally occurs the expected number of 
times in a document), the case where as expected it does not occur in an irrelevant document, and the case 
where it does not occur in a relevant document.  In the first two cases the value is 0 because it matches the 
empirical expectation, and the third is not distinguishable by our simplistic model. When TF=DF, there is a 
more serious problem as the variance is zero so p(TF≠DF)=0, so that in the Katzian models, β=0, γ=1, δ=0, 
ε=1 in violation of our assumptions, and α and η are consequently not well defined. There are several separate 
issues here arising from specific assumptions and that all cases where a probability is 0 or 1 are degenerate.  In 
particular we want to ensure: 

1. There is a non-zero probability of occurrence in an irrelevant context (α) 

2. There is a non-zero probability of an extra occurrence in a relevant context (δ)  

3. There is a non-zero probability of null occurrences in a relevant context (ε) 

The implication of point 1, is that zero occurrences is actually an underestimate of the expected number of 
occurrences in an apparently irrelevant document (any term may occur incidentally or as a change of topic), so 
that the document information gain should actually have a negative value (a loss), the count being less than 
expected.  To preserve sparsity, we could compensate for this by adding α>µ to all non-null terms before 
splogging as the probability of occurrence in an irrelevant context, or µ=DF as the probability of occurrence in 
any context. The latter is the better choice as we specifically recognize than non-occurrence does not imply 
irrelevance, where as the former corresponds to the usual IR search models where non-occurrence is equated 
with irrelevance.  

Thus one solution is to view frequency 0 as a deviation from µ, being our estimate of the expected number of 
occurrences in an arbitrary context. Since we want to maintain sparsity and keep the expected values at 0 (and 
these zeros dominate the matrix and heavily influence the mean), we propose to maintain relativity by 
adjusting the values for non-null occurrence by subtracting µ (modification µ). Given some of our null-
occurrence documents may be relevant, it would also be possible to subtract α to demean that subset of the 
documents (modification α). However in the absence of some independent way of determining relevance we 
cannot distinguish the relevant documents and they overlap both the null and non-null occurrence documents. 

The implication of point 2 is that we need to implement some kind of improved estimate of δ in at least the 
cases where λ=TF=DF=µ.  This could be implemented as some kind of smoothing, and in particular we have 
an implicit assumption that the probability of occurrence in an irrelevant context is cannot exceed the 
probability of occurrence in a relevant context, and both are strictly non-zero (0<µ<α<δ<1).  Note that if we 
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have eliminated stopwords and are limiting our terms to topically relevant terms, the central inequalities 
should be strict as relevant topics should be more frequent than documents containing terms as illustrated by 
synonyms, paraphrases and definitions, and the Katzian cluster model is based on the idea that words are more 
frequent once the initial occurrence has occured. An ‘add one’ or ‘add half’ style correction would note that 
E(TF)>E(DF) according to the model and that it is just that in a limited size corpus we are seeing specific TF 
and DF values from a distribution that happen not to satisfy TF>DF, and propose correcting this with an 
estimate TF*=DF+φ, for φ = 1.0 or 0.5, or φ/µ = 1.0 or 0.5.  

However, this can actually lead to violations of probabilistic conditions (probabilities exceeding 1), so that a 
more intelligent approach is needed. We therefore introduce an increment φ that is a function of µ and a factor 
f that specifies the proportion (probability) of non-occurrence contexts that are in fact relevant. Our constraints 
give us a smoothing model of the form ‘add φ to µ’ (adding to empirical corpus term frequencies) or ‘add φ/µ 
to γ’ (adding to expected document term frequencies or counts, TFwd ≈ TCwd) defining the reasonable values 
of φ as follows:  

1 > λ = TF* = µ + φ > DF = µ (54) 

1 > α = µ·(µ + φ) / φ = µ·(µ/φ + 1) (55) 

Solving the quadratic inequality (55) for positive µ and φ and parameterizing with f, we obtain 

φ > µ2/(1-µ)  (56) 

µ < [φ2 + 4φ]-1/2 / 2 (57) 

φ = µ2/[f·(1-µ)], α = f·(1-µ) + µ, 0 < f < 1 (58) 

Hence a minimal variant of ‘add φ’ smoothing would be to set documents with such expected levels of 
occurrence and one actual occurrence to 1+φ/µ.  In this model, setting f = 1 violates the model and even f = 
0.5 is not conservative enough as it states that half the null-contexts are actually relevant, however a good 
search term has µ<<0.5 as the appropriate estimate of the probability of occurrence in a context whose 
relevance is not known, and f = µ leads to the definition of φ as the odds ratio ρ 

φ = ρ = µ/(1-µ), α = µ + µ·(1-µ) = 2µ-µ2, γ = (2-µ)/(1-µ); β = 1/(1-µ); δ = 1/(2-µ)  (59) 

where the increased estimate for β becomes our increased estimate of frequency when TF = DF, and all non-
zero frequencies are 1. Note that β > 1, γ > 2. 

When TF = DF = µ, there is no distinction between relevant and non-relevant contexts and our definitions are 
useful only to describe a zeroth order model Gº in which the probability of occurrence in any context, P0 = µ, 
is equated with the probability of occurrence in a relevant context, δ. To bootstrap a first order model that 
takes into account relevance of a context, we estimate the true probability of null contexts that are relevant 
with no occurrences as f=µ, the observed proportion of contexts that are non-null and hence relevant but have 
no recurrences, giving us the parameterization in (59) and estimates of α and δ that satisfy 0<µ<α<δ<1 for all 
values of TF and DF. 

Thus one approach to ensuring accurate demeaning of the non-null contexts is to reestimate β and γ as above 
when TF=DF and then for all cases subtract β from the actual frequencies, being our estimate of the expected 
number of occurrences in a relevant context (modification β). The error introduced by modification  of each 
non-null context is thus β – µ > 0, while an equal error of opposite sign is introduced by modification 2 of each 
null context.  An argument could also be made for subtracting γ, as our estimate of the expected number of 
occurrences in a non-null context (modification γ), however this is unfairly using the single occurrence to 
define a relevant document and then discounting it as an occurrence – the question of relevance must be 
decided independently for γ to be a valid estimate. 

Note that applying Good-Turing smoothing or Katz-backoff across the different term types will tend to give a 
decreased estimate of the frequency of such rare terms drawn from an open class as assumed for search terms 
(Gale, AAAA), and its underlying exponential-form is not necessarily appropriate for smoothing across types 
that obey Zipf’s Law (Zipf, 1949; Samuelsson, 1996; Gale, 1995), although Samuelsson’s ‘deceptively 
similar’ modification that conforms to the Zipfian distribution may be.  However, the strict version of Zipf’s 
Law implies a finite lexicon in contradiction of our notion of open class and needs to be understood as a sum 
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of distinct distributions with different characteristics (Powers, 1998), and Zipf (1949) also noted that it was 
dependent on document size.  

The implication of point 3 is that we need to go beyond the occurrence count to determine whether a context is 
relevant – there are approaches based on word similarity using techniques such as LSI or WordNet that give 
an independent estimate of the probability of a specific context being relevant. If we are using SVD to 
calculate the LSI, then we have a recurrence problem: we could come back with a revised estimate and 
recalculate everything. 

Note that log(1+x) ≈ x for small x. Hence it is sufficient to replace the splog value for unit occurrences by -γ to 
implement the modification for TF=DF, representing the lower than expected occurrence counts.  More 
generally, log(k+x) ≈ log(k) + x/k so that to achieve modification µ resp. α, β or γ it is sufficient to decrement 
the splog value by µ/k resp. α/k, β/k or γ/k. We will refer to the original model as splog0, and the models 
implementing the respective modifications as splogµ, splogβ, etc. Model splogµ is both sparsity- and 
occurrence-preserving, whilst splogβ may introduce additional zeros when β is integral, and the other two are 
not usable in the absence of independent information about relevance. 

The best choice is arguably splogµ in terms of guaranteeing preservation of both sparsity and occurrence 
information. Moreover, splogµ introduces considerably fewer errors and hence a much lower sum-of-squares 
error in the high-sparsity expected and desirable distributions for useful search terms in which the number of 
null contexts (splogβ errors) vastly exceeds the number of null contexts (splogµ errors). In addition, splogµ 
restricts the effective measure of central tendency to the range between median or mode and geometric mean 
(see Eqn 53). 

Note that the negative values that occur when splogging a frequency that is less than expected could actually 
be useful in a non-positive condition for use in implementing the Boolean NOT operator – it is arguably better 
say the document has a lower than expected occurrence rate rather than to force it to have zero occurrences. 

Parameterization of the P-mixture 
We perform a similar analysis to see how TE handles the pathological cases. As noted above, the K-mixture 
and P-mixture are not well defined in this case as γ=1, β=δ=0, violating our constraint that 0< δ<1 (and α and 
η are undefined as a result). 

Analogous to the corrections in the previous section, we can propose two simple corrections to the K-mixture: 
1. setting γω=1.5 in the specific case where TFw=DFw; or 2. incrementing γ in all cases using γω=γ+0.5. In both 
cases identities 28 and 30 to 32 can be used to define βω, δω, εω and ζω, from γω alone.  These are clearly no 
longer consistent with the empirical values for TFw and DFw so we give priority to  
DFω ≡ DFw and treat TFw as being a truncated estimate of the true value TFω ≡ γωDFw according to identity 34. 
Identities 27 and 33 may now be used to define αω and ηω.  Note that whereas previously we considered an 
‘add φ to µ’ model, here we are parameterizing as an ‘add 1/κ to β and γ’ model, recalling γ estimates TFwd 
and TCwd. 

Elaborating the two simple cases and asserting condition 55 as a constraint, we get  

λ = TFω = 1.5 · DFω, µ = DFω = DFw = 2 · φ < ⅓  if DFw=TFw (60) 

λ = TFω = [TFw/DFw+0.5] · DFω, µ = DFω = DFw = 2 · φ < ⅓ (61) 

More generally, we can reduce the increment in line with the specificity of terms κ: 

λ = TFω = (1+1/κ) · DFω, µ = DFω = DFw = φκ < 1/(κ+1)  if DFw=TFw (62) 

λ = TFω ≡ TFw + φ = [TFw/DFw+1/κ] · DFω, µ = DFω ≡ DFw = φκ < 1/(κ+1) (63) 

Now equations 26 to 33 define the κP-mixture for these smoothed models. Note that in the DFw=TFw case, we 
have β = λ/µ – 1 = κ (62 or 63). Furthermore, with κ = 2 (Eqn 61 ≡ 63) ζ corresponds in value to γ in the 
original K-mixture and the  
κ=2-parameterization of the κP-mixture leads to ζ-parameterization in terms of  
ζ = TFw/DFw, µ = DFw, referred to as the ζP-mixture, whereas the K-mixture is parameterized in terms of γ = 
TFw/DFw, µ = DFw representing the limit as κ approaches infinity, and can be also be identified as the γP-
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mixture. The special case κ = 1 gives φ = µ, β = TFw/DFw and a standard ‘add one’ model, referred to as the  
βP-mixture. 

With these models we are setting a fixed φ = µ/κ subject to µ < 1/(κ+1) and equivalently κ < (1-µ)/µ (both 
forms following from substitution of φ in Eqn 56). This condition must hold for µ=DFw for all terms w so we 
must set κ on the basis of the greatest value of DFw observed in the corpus. We may use this parameter either 
for just the DF=TF case (Eqn 60 or more generally 62), or for all cases (61 and 63).  

Alternatively, if we use f = µ, φ = µ/(1-µ) to define the parameterization (59 or 63 with κ = µ/φ = 1-µ < 1), the 
mixture is self-adjusting and automatically satisfies  
κ < (1-µ)/µ = 1/φ = κ/µ and thus µ < 1/(κ+1). Observe that this also forces κ < 1 whereas in the constant κ-
parameterizations we have normally tried to set κ ≥ 1.  In the limit this auto-parameterization approaches the φ 
= µ, κ=1 (‘add one’) case as µ approaches 0 (corresponding precisely to those rarer terms where TFw=DFw is 
more likely, and in which limit we find TFω=2DFω). In this case of small µ we can also approximate 1/κ = 
1/(1-µ) ≈ 1+µ and hence φ ≈ µ(µ+1) = µ + µ2

, being early terms of the GP that defines the Gº model.  

The question is whether (63) is a theoretically reasonable generalization of (62) for either the constant or the 
self-adjusting parameterization using κ = 1-µ. In particular, TFwd rates will occur for conditions other than 
DFw=TFw and must occur for  
TFw < 2DFw. In these cases the TFwd also represent underestimates of the actual probabilities according to our 
assumptions about content words recurring in relevant contexts (and so defining bursts or clusters). Assuming 
the validity of the TFw=DFw reestimate (62) and now considering a case where the expected count for term w, 
TFw=DFw+k.  According to our argument in defining this estimate, the probability of unexpressed occurrence 
or recurrence has decreased, and there will be exactly one document containing two occurences for the case 
k=1, so we still find f=µ.  For µ>k>1 it is possible to have only documents with one or two occurrences for 
which f=µ again follows, but it is also possible to find larger clusters which we would however argue is 
consistent with the same distribution but simply further from the mode. 

We now analyze the role of the probability of a document being relevant given there are zero occurrences 
varies with k, defining this as pk satisfying 

α = PD(d Я w) = PD(d ∋ w) + PD(d Я w | d ∌ w) PD(d ∌ w) = µ + pk(1-µ) (64) 

By some simple arithmetic manipulations we see 

α = [(TF+φ) · µ] / [(TF+φ) – µ] = µ + µ2/[k+φ] = (1-µ)/[k(1-µ)/µ2 + 1/f] (65) 

This gives us a number of interesting and insightful relationships involving the odds ratio ρ = µ / (µ-1) and in 
particular ρµ (which is constant for a given w or µ = DFw): 

pk = ρµ/[φ+k],  φ =  µ2/[f·(1-µ)] = ρµ/f (66) 

1/pk = 1/f + 1/fk,  fk = µ2/[k·(1-µ)] = ρµ/k,  f = fφ = µ2/[φ·(1-µ)] = ρµ/φ (67) 

Recalling that interval scales are often more appropriate and amenable to statistical manipulation than the 
reciprocal frequency and probability scales, we see that f = fφ defines the k=0 proportion of the null 
documents, and k specifies increments in terms of the interval φ with the smoothing technique being clear seen 
as of ‘add one’ character on this interval scale.  Moreover, although (67) is apparently only well defined for 
k>0, because of being defined in terms of probabilities, this really only illustrates again that the fundamental 
events are occurrences defining intervals, and that probabilities are not always the most convenient averages to 
use as the basis for a model. Thus the φ and 1/f terms go to 0 in the K-mixture limit, and the k and 1/fk terms 
go to 0 in the TF=DF limit, and when both limiting conditions hold we confirm that the K-mixture is not well 
defined for TF=DF. 

What this shows is that whatever justification we have for the k=0 case (TF=DF), it carries over sensibly to 
k>0 cases in a manner highly reminiscent of Zipfian smoothing methods rather than Good-Turing or the 
original Katz (1987) backoff scheme, where Good-Turing/Katz-backoff smooths towards an infinite geometric 
distribution over types that is similar to Gº but Zipf’s Law implies a finite inverse linear distribution and both 
of these appear to define bounds on the true distribution rather than reflecting the distributions directly 
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(Samuelsson,1996; Powers,1998).  Thus we conclude that the generalization of (62) to (63) is appropriate for 
any reasonable definition of κ, and precit that f=µ, κ=1-µ will be the better than constant κ-parameterizations. 

Note that Katz (1996) both defined and tested models using the same corpus and aggregations of terms with 
similar statistics, whereas the correct way to test the model is to parameterize it using empirical probabilities 
drawn from a training set and to validate the model and compare models using an independent validation set 
and then publish results for the selected optimum model for a third independent test set. The partitioning may 
be done on the basis of documents or terms, or preferably both. 

We called the κ=1 and κ=2 parameterization according to equations 61 and 63 the β- and ζ-parameterizations 
defining the β- and ζP-mixtures as discussed above. We define the κ=1-µ parameterization according to 
equation 63 the µP-mixture, and refer to other parameterizations with a constant κ as κP-mixtures.  Equation 
62 doesn’t define a true parameterization but rather a correction of the one specific degenerate case of the K-
mixture, and we thus refer to these as κP-correction with the κ=1-µ,   
µP-correction being the recommended correction.  Note that the constant κ parameterizations and corrections 
are subject to the constraint µ < 1/(κ+1), and introduces an additional parameter, whilst the κ=1-µ constraint of 
the canonical P-mixture or P-correction does not introduce an additional parameter. It is now a matter for 
empirical investigation as to which of these four models is best, and in the case of the κ-parameterization or κ-
correction, which value of κ, as well as demonstrating that they are better than the degenerate zeroth order Gº 
model that arises when TF=DF (this must be demonstrated in application to unseen text where this may or 
may not hold).  The autoparameterized P-mixture may be expressed directly as 

λ = TFω = [TFw/DFw+1/[1-µ]] · DFω, µ = DFω = DFw = φ[1-µ] < 1/(κ+1) (68) 

The discussed variants of the κP-mixture defined by equations 26 to 33 and 63 (replacing 34 and 35) may be 
summarized as follows, noting that ρ is the odds ratio µ/(1-µ) = f/κ, that φ = µ/κ = µρ/f, and that 0 < f < 1 is 
required for a valid model so that the γP-mixture is the ill-defined unsmoothed K-mixture defined by µ = DFw 
and one of γ as empirical ratio γo = TFw/DFw, δ as δo = 1 – 1/γo or ε as εo = 1 – δo = 1/γo: 

Name φ κ f γ γo = TFw/DFw 

κP-mixture µ/κ κ κρ γo + φ/µ (λ-φ)/µ 

K-/γP-mixture 0 ∞ ∞ γo γ 

βP-mixture µ 1 ρ γo + 1 β 

ζP-mixture µ/2 2 2ρ γo + ½ ζ 

µP-mixture ρ 1-µ µ γo + 1 + ρ (λ-ρ)/µ 

These models and the corresponding corrections to just the TF=DF case may all be tested empirically by 
modeling on one (sub) corpus and validating on another.  Such validation may include direct term fitting or 
practical application of the corrections to some application, such as the information retrieval search domain. 

The true Katz models, G= G′′ and G′, and our generalization, G{m}, depend on a concept of relevance or 
topicality that requires bursts of more than one occurrence (viz. k≥2) to define topicality in the G model, and 
in G{m} that generalizes to k≥m. In our smoothing process for first order models, P0 = δ0 = µ doesn’t change 
and P1 = δ0 can be directly defined from the above table as δ = 1 – 1/γ. To generalize this to higher order 
models we distinguish two possibilities.  

The first possibility is to adjust only Pm = δm ≈ Cm on the basis that all k<m are equally indeterminate in 
defining relevance although some may nonetheless be topical but not have the expected additional recurrences. 
This may be done analogously to the above using µm as the probability of topicality (k≥m occurrences) in 
place of µ and δm as the conditional probability of recurrence in a topical context (with k≥m occurrences) in 
place of δ.  Note that the geometric series defined by (1-δm)δm

k-m sums to unity for k≥m and thus sum over 
k≥m of the contributions of the final term of G{m} are independent of k so that adjustment of δm does not 
require any concomitant adjustment of δk for k<m to ensure the sum over all Pw(k) is unity as required for a 
probability distribution. This is then the first approach to consider. 

The second possibility is to adjust all Pk for 0<k≤m. This requires additional assumptions, and potentially a 
whole family of m constants κk and totally separate parameterizations δk

(m) for each G{m}.  The obvious way of 
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avoiding the first of these problems, the explosion of new assumptions, is to assume that the probability of 
non-occurrence in a relevant context is the same whether or not the k≥m condition for topicality has formally 
been met, and independent of k. This is a generalization of the assumption that led us to define the µP-mixture 
using f = µ, and hence φ = ρ and κ = 1-µ.   

The second of these problems, with its potential for overfitting, can be dealt with by defining the parameters δn 
sequentially according to approach one for the desired n=m as well as for all n<m, and incorporating them into 
a variant of our second approach.  This may however tip the balance to the opposite extreme and lead to a 
parameterization that is too smooth, but both the first approach to smoothing and the original G{m} model are 
more likely to be overfitted to the training data even though the definition of Pm is already an average over 
k≥m.  Note that empirically Pw(k) is rarely strictly monotonic for a given w. 

The optimal value of m may be a function of D, the typical document size, as this imposes a limit to k, viz. k 
<< D.  Generally, we prefer a model that does not tune κ, f or φ to specific w and where m is a function of D 
or selected by observing when the order n>m fit leads to δm ≈ δn. 

The assumptions and notations underlying the unsmoothed G{m} model may be summarized as 

d ∋ w ↔ k ≥ m →w Я d;  Cm = Pm;   (69) 

That is, we define membership as having a threshold equal to the order of the model and implying relevance 
without relevance implying membership, and also treat the average conditional probability of additional 
occurences Pk as being constant Cm for k≥m.  

The additional assumptions generalizing the µP-mixture approach to G{m} are 

Pw(w Я d |k=0) ≡Pw(k=m | k≥m & w Я d) = µm (70) 

That is the probability of a context being relevant despite seeing no occurrences is equated with the probability 
of finding no further occurrences after seeing m. The first approach uses this only when m is the order of the 
model, whilst the second approach uses it for any m≤n where n is the order of the model desired. These are 
thus applied only to determine Pm in our first level approach to smoothing, giving G[m], but in our final variant 
we coopt the Pm (m<n) values of the low order models with first level smoothing as the Pk used to define our 
fully smoothed model G(n). Variants corresponding to the κP-mixture may be used in place of assumption of 
identity 70, leading to models we denote Gκ

[n] and Gκ
(n)

, but as discussed above the latter may require a whole 
family of additional parameters κk dependent on µ and possibly m. 

Modifications to term entropy model 
The TFIDF and TE models involve a log factor so we investigate if it can be made sparsity preserving by 
applying an orthogonal demeaning (the log factor and log term depend on w only, whilst the linear factor 
depends on both w and d). IDF is not appropriate for sparse orthogonal demeaning as it is constant for a given 
word and thus simply weights binary occurrence vectors in the word vectors of the dual formulation. We will 
also see that TF can be sparsity-preserved during demeaning. 

Orthogonal demeaning in IR means taking the mean across documents for each word, notwithstanding that we 
are primarily interested in using words as signature vectors to characterize documents, and thus would 
normally demean those vectors. We will thus swap to thinking in terms of comparing the similarity of words, 
with their similarity of sense being measured by the similarity of their signature vectors of document 
occurrence information. The first step is to note that the -log(η) term in the TE model is constant for a given 
word and is thus preserved in the mean of the corresponding signature vector. This is similar to the IDF binary 
occurrence weighting and should similarly be retained rather than demeaned in order to distinguish typical 
occurrences from non-occurrences. This distinguishing term is missing from the TFIDF model, and some such 
term would thus need to be introduced, so the TFIDF model will become more like the TE model if we make 
it sparsity and occurrence preserving, with the obvious modification being to add in an IDF term (cf. equation 
37). This is equivalent to using an ‘add one’ correction on TF: TF1IDF = (TF+1)*IDF. 

The IDF factor in (TFwd+1)*IDFw and the -log(δ) factor in TE are constants (given w) and the mean over the 
full set of documents of TFwd is TFw. Thus the orthogonal means are (TFw+1)*IDFw and -log(δ)*TFw –log(η) 
resp. These means represent the average document in the sense that its distribution of terms resembles the 
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corpus as a whole.  However, such a document would typically be encyclopaedic and thus not be 
representative in size (number of words in the sense of tokens irrespective of type) or lexical coverage 
(number of distinct terms or types).  But note that we have actually assumed all documents are the same size 
or are normalized to equivalent size (in tokens), which also limits its lexical coverage L (in types).  In fact, the 
fact that most actual documents are missing many terms (types) indicates they are not representative and the 
sign of the deviations from the orthogonal means tells us how much more or less than expected a word 
occurred in the document. 

If we average only over the documents that contain a term, then the average of TFwd is TFw/DFw since it 
occurs in only DFw/N of the corpus documents. This we recognize as the pivotal ratio γ in the K-mixture or ζ 
in the κ=2  ζP-mixture model or β in the κ=1 βP-mixture. This leads to orthogonal means of 
(TFw/DFw+1)*IDFw and  
-log(δ)*TFw/DFw – log(η) for our respective models. 

The vector mean, TFd, corresponds to the typical (but non-specific) word frequencies of the documents for 
non-stopwords, and is not likely to vary much with the topic of the document, but rather reflects the nature of 
the document (encyclopaedia, dictionary, paper, story, letter, etc.)  We thus drop the subscript and treat TF as 
a corpus or language constant.  Words that occur more or less frequently than this represent words that are 
expected to be more or less significant in the implausible TF model.  In TFIDF or TE (Eqn 37) it is harder to 
characterize as both factors are dependent on w and one is dependent on d as well.  However, if we do a 
double demean to avoid the dependence on d, we get an average value for TFd that we define as the constant 
TF which for all variants of the TFIDF and TE models is a simple document-independent average of a 
function of our model parameters. 

Intuitions about document topicality 
Suppose all our documents are of size D and we have a document that topically features word 1 (train, say) at 
some high level f11 = D*p11 and a second document that topically features word 2 (dog, say) at some high 
level f22 = D*p22.  We will further assume no occurrences of word 1 in document 2 or vice versa. If we were 
simply to append the documents the new document would have size 2D, fs1 = f11 = D*p11 = 2D*ps1 etc. The 
absolute frequency of a term in the combined document is the same as in the respective original documents, 
but its probability is halved, and the expected interval between occurrences is doubled (although this is 
misleading as all instances of word 1 will be in the first half and word 2 in the second half).  This combined 
document is moreover no more use to us than the separate documents – this we call encyclopaedic 
combination where words are topical in separate entries, but the overlaps and relationships are not in focus. 

If we now summarized the combined document down to size D, it is unlikely that we would halve the 
frequencies of the two terms given these remain topical as intended, but nor is it likely that we could maintain 
the full frequency of occurrence given the independence of the topical domains as discussed in the documents. 
The act of summarization will furthermore not make the document more relevant which would require 
overlaps to be discussed, although its lesser size may make it more useful – and even though size is factored 
out this additional density may be emergent and this is one reason why normalizing by the frequency of the 
most frequent term (content word) in a document can be usefully used for TFIDF rather than mere document 
size (whether in words or terms).  On the other hand, such a measure will also reflect changes in style, genre 
and register (e.g. age or vocabulary or author or audience, length of sentences, use of anaphora, use of 
hyponyms, hypernyms, technical terms and circumlocutions). 

We could make the documents more relevant by adding new material that discussed relationships between the 
focus terms, but to do that we would have to drop existing material, perhaps replacing irrelevant examples for 
one term with examples that are in the topic domain of the other (e.g. taking a dog on the train instead of a 
bicycle, training a dog instead of rat). If there is implicit topical relevance in the other document, but it is not 
obvious due to use of a paraphrase, synonym, hyponym or hypernym, the summarization could make the 
relevance more apparent without changing its actually relevance (e.g. taking a dog on the train instead of an 
animal, training a dog instead of an Alsatian).  This problem can be accommodated by using either implicit 
(e.g. LSA/LSI) or explicit (e.g. WordNet) semantic matching. 
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The Frequency and Time domains 
So far we have assumed that we are dealing with frequencies to the exclusion of consideration of time (viz. the 
order of words) and using a fairly large window to determine the frequencies (a document of size D which is 
typically of the order of 2000 words or more, and sometimes as large as entire chapters or even books). For 
many purposes, a smaller context is more appropriate, such as a clause, sentence or paragraph. In inducing 
syntactic information some knowledge of the word order is essential and often this information is determined 
over small contexts of a dozen words or less.  For speech processing, the contextual information is often very 
limited and stored in the form of a Hidden Markov Model derived from Ngram statistics regarding sequences 
of N units (classically words). Models of the same order are also used in various compression schemes, and 
these models have also been used for statistical or semantic modelling since the 1960s (Wolff) as well as in the 
more general Minimum Message Length and Minimum Description Length models of theory evaluation. 
These have the advantage that sufficient information is retained to reconstruct a message indistinguishable 
from the original whilst maximizing the information that is implicitly stored in the compression model. In 
speech processing this level of physiological indistinguishability includes retaining all the information a 
human hearer would use to identify the speaker and distinguish characteristics such as gender, accent, 
emotion, etc. 

In recording and analysing real world situations and data, these techniques can be extended to include multiple 
sensors and modalities, including multiple microphones (for noise localization and cancelling), cameras (for 
lip-reading and gaze tracking) and biosensors (for brain computer interface and monitoring of attention, stress, 
etc.) This raises further issues about the signal processing, compression and fusion of massive amounts of 
information from diverse sources.  Again a standard approach is to define frames, windows or epochs of a 
relatively small size, and possibly on multiple scales and across multiple dimensions, and to perform spatial, 
temporal or spatiotemporal frequency analysis. 

However, a common early step after frequency analysis is to compress using SVD, and this is a common 
precursor to more advanced techniques signal separation techniques such as ICA.  Typically multiple sensors 
give rise to multiples streams of time-varying signal for data with dimensions sensors x time or sensors x 
frames x times, where the frames are arbitrary or psychologically plausible time segments.  The standard 
technique for converting into the frequency domain is to convert the time information in to frequency 
information using an FFT or similar.  This gives the data the dimensions sensors x frequency (spectrum) or 
sensors x frames x frequency (spectrogram).  Performing an SVD and/or an ICA transformation can now be 
used to reduce this to sensors x sources and sources x frequency or sources x frames x frequency. 

However, since SVD and ICA are linear operations, and FFT and IFFT are also linear operations, the SVD and 
ICA will recover the same sources when applied direct to the time domain data as when applied to the 
frequency domain data, and apart from rounding and training error the frequency data extracted is the same 
whether the FFT is performed first or last.  These leads to two conclusions: there is no point in performing an 
IFFT after SVD to take the sources back into the time domain, and it is more efficient to perform the SVD 
dimension reduction before the FFT than after.  Note that whilst the SVD and ICA matrices need to be 
calculated based on the data (though theoretically they are then stable for stationary sources), the FFT and 
IFFT are fixed matrix multiplications, and a Symmetric Fourier Transform (SFT) actually expresses all the sin 
(imaginary) and cosine (real) components of the FFT in a rectangular real-valued matrix whose transpose acts 
as a pseudoinverse (viz. ISFT = SFT′). 

To the extent that other forms of frequency analysis are linear and invertible, this would also be true for those 
techniques.  However the other techniques do not in general have these properties, and even the windowing 
techniques applied to FFT represent deviations from these properties.  DCT for example throws away phase 
information to double the frequency resolution.  Wavelets sacrifice linearity for time specificity.  Linear 
Predictive Coding (LPC) and Auto-Regression (AR) sacrifice the ability to distinguish phase, frequency and 
reverberation for a smoother frequency envelope. Cepstrum takes the logarithm of power between the FFT and 
IFFT operations, thus sacrificing linearity for increased frequency specificity and rejection of reverberation 
whilst counting the frequency of frequencies, which is particularly useful for establishing the fundamental 
where many harmonics are present.   
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